

名古屋大学 未来材料・システム研究所

研究所エリアを北側から撮影

未来材料・システム研究所(略称未来研)は、環境と調和させながら持続発展可能な社会を実現するための材料・デバイスからシステムに至る幅広い領域の研究課題に取り組んでおります。

- 未来研は、未来エレクトロニクス集積研究センター、高度計測技術実践センター、材料創製部門、システム創成部門、2つの 寄附研究部門と2つのラボラトリを含む10の産学協同研究部門から構成されております。

未来エレクトロニクス集積研究センターでは、窒化ガリウム等のポストシリコン材料を用いたデバイスに代表される先端的エレクトロニクス研究を推進しており、未来のエレクトロニクス産業の基盤の創成を目指しております。また、寄附研究部門、産学協同研究部門やGaNコンソーシアムを通して、オールジャパン体制でGaNに関する産学官の連携研究も推進しております。

高度計測技術実践センターでは、電子顕微鏡観察をはじめとする先端的な計測技術の開発と人材育成を行っております。 また、文部科学省のナノテクノロジー・プラットフォーム事業により、学内外の研究者・技術者に対してナノテクノロジーに関する 技術支援を行っております。

材料創製部門では、省エネルギー、創エネルギーや環境保全に貢献する新規材料の研究に取り組んでおります。また、6大学が連携したライフイノベーションマテリアル創製共同研究プロジェクトも推進しております。

システム創成部門では、環境調和型のエネルギー変換システム、電力や交通のネットワーク、物質循環・リサイクルシステム等に関して、寄附研究部門とも連携して研究を進めております。

未来研は、革新的な省エネルギー研究を先導する共同利用・共同研究拠点として、文部科学省から認定されており、国内外の大学や研究機関と共同利用・共同研究を実施しております。

未来研所員一同、全力でそれぞれの研究課題に取り組んでおりますので、引き続き、変わらぬ御支援、御協力ならびに御指導、御鞭撻を賜りますよう、お願い申し上げます。

所長 成 瀬 一 郎

The Institute of Materials and Systems for Sustainability (IMaSS) engages in research on topics ranging from materials and device development to systems technologies toward the realization of an ecological and sustainable human society.

IMaSS consists of the Center for Integrated Research of Future Electronics (CIRFE), Advanced Measurement Technology Center (AMTC), Division of Materials Research (DM), Division of Systems Research (DS), two funded research divisions, and 10 industry-academia collaborative chairs.

CIRFE engages in leading-edge electronics research, including unexplored research areas of devices with gallium nitride (GaN) and other post-silicon materials, while also cultivating top-notch human resources to lay the foundations of future electronics industries. CIRFE promotes GaN collaborative research with one of the funded research divisions, the industry-academia collaborative chairs, and the consortiums for GaN research and applications.

AMTC specializes in advanced research such as electron microscopy imaging and measurement technologies, as well as human resources development. The Center also provides technical support on nanotechnology to researchers both in Japan and overseas through the Nanotechnology Platform Consortium Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

DM promotes research and development on energy-saving, energy-producing, and ecological materials. The Division is also leading the new collaborative project among six university research institutes,

"International, Interdisciplinary Joint Research Project in Pursuit of Life Innovation Material Creation and Highly Skilled Human Resources".

DS and the other funded research division are


DS and the other funded research division are engaged in research on ecological energy conversion, network systems for power and traffic, and materials circulation and recycle systems

IMaSS has also been designated by MEXT as a joint usage/research center of materials and systems for innovative energy management and is vigorously promoting joint usage and research with domestic and overseas universities and research institutes.

Director Ichiro Naruse

IMass Organization chart

未来デバイス部 Device Innovation Section マルチフィジックスシミュレーション部 Multiphysics Simulation Section 先端物性解析部 Materials Nano-Characterization Section 附属未来エレクトロニクス集積研究センター システム応用部 System Applications Section 国際客員部 International Research Section 產学協同研究部 Industry-Academia Collaborative Research Section 研究戦略部 Research strategy section 電子顕微鏡計測部 Electron Nanoscopy Section 電磁波計測部 Electromagnetic Wave Measurements Section 附属高度計測技術実践センター Advanced Measurement Technology Center (AMTC) 素粒子計測部 Elementary Particle Measurements Section X線分光計測部 X-Ray Spectroscopy Section ・ナノ加工計測部 Nanofabrication&Characterization Section 材料物性部 Materials Physics Section 材料創製部門 Division of Materials Research 材料設計部 Materials Design Section - 材料プロセス部 Materials Processing Section * 変換システム部 Conversion Systems Section 所 長 Director システム創成部門 ネットワークシステム部 Network Systems Section 循環システム部 Circulation Systems Section ※システム創成 部門関連 副所長 Vice - Director トヨタ先端パワーエレクトロニクス寄附研究部門 Toyota Advanced Power Electronics Funded Research Division 産総研・名大 窒化物半導体先進デバイスオープンイノベーションラボラトリ NIMS・名大 GaN評価基盤研究ラボラトリ - 天野・小出共同研究ラボー NIMS-NU GaN Evaluation Basic Research Laboratory - Amano-Koide Collaborative Research Lab-トヨタ先端パワーエレクトロニクス産学協同研究部門 デンソー自動車用パワーエレクトロニクス産学協同研究部門 DENSO Automotive Power Electronics Industry-Academia Collaborative Chair ※附属未来 豊田合成GaN先端デバイス応用産学協同研究部門 エレクトロニクス 集積研究センター 関連 旭化成次世代デバイス産学協同研究部門 豊田中研**GaNパワーデバイス産学協同研究部門** TOYOTA CENTRAL R&D LABS GaN Power Device Industry-Academia Collaborative Chair 三菱ケミカルGaN基板デバイス産学協同研究部門 ローム複合系シミュレーション産学協同研究部門 デンソー革新的ナノカーボン応用産学協同研究部門 DENSO Nano-carbon Research & Innovation Industry-Academia Collaborative Chair 超高圧電子顕微鏡施設 研究所事務部 総務課 General Affairs Division Administration Office for Research Institutes

副所長 **齋 藤 晃**

高度計測技術実践センター 教授

Vice - Director SAITOH, Koh

1997年東北大学大学院理学研究科物理学 専攻博士後期課程修了。東北大学助教を経 て、2004年にエコトピア科学研究機構講師、2009年エコトピア科学研究所准教授、 2014年より同教授、2015年現所属教授、 2020年より副所長。専門は電子線物理学。 軌道角運動量をもつ電子やスピンが偏極した電子など革新的な電子ビームをもちいた ナノメーター領域の構造解析および物性評価法の開発を行っている。最近は機械学習をもちいた情報抽出にも取り組んでいる。

Koh Saitoh is currently the vice-director of the Institute of Materials and Systems for Sustainability (IMaSS) at Nagoya University. He received a DC degree from Tohoku University, Japan, in 1997. After serving as a research associate at Tohoku University, he joined Nagoya University in 2007 as a lecturer of the EcoTopia Science Institute in 2004, then became an associate professor in 2009. He was promoted to a professor of the same institute in 2014 and became a professor of IMaSS in 2015. He became the vice-director of IMaSS in 2020. His research interests include electron beam physics, electron crystallography, and diffraction physics, , with special emphasis on developing measurement technology using innovative electron beams such as electron vortex beams and spin polarized electron beams. Recently, he has started the application of the machine learning technique to electron microscopy data.

成瀬 一郎

システム創成部門 教授

Director NARUSE, Ichiro

1989年名古屋大学大学院工学研究科博士課程後期課程修了(工学博士)。豊橋技術科学大学助手、助教授、教授を経て、2007年より名古屋大学大学院工学研究科機械理工学専攻教授。また、2012年2月よりエコトピア科学研究所教授として異動。2017年より研究所副所長、2020年4月より所長。専門は環境・エネルギー工学であり、バイオマス・廃棄物・石炭の燃焼・ガス化挙動の解明、NOx・SOx・微粒子・水銀等の微量金属成分の生成機構解明や排出抑制技術の開発等を行っている。

Ichiro Naruse is currently the director of the Institute of Materials and Systems for Sustainability (IMaSS) at Nagoya University. He received a DC degree from Nagoya University, Japan, in 1989. After serving as a research associate, an associate professor, and a professor at Toyohashi University of Technology, he joined Nagoya University in 2007 as a professor in the Department of Mechanical Science and Engineering, then became a professor of the EcoTopia Science Institute at Nagoya University in 2012, and the vice-director of IMaSS in 2017. He became the director of the same institute in 2020. His research interests include energy and environmental engineering, especially for the elucidation of combustion and gasification behaviors of biomasses and wastes and coals, and studies of the emission behaviors of NOx, SOx, particulate matter, and trace metals including mercury and the development of their control techniques.

内山知実

材料創製部門 教授

Vice - Director UCHIYAMA, Tomomi

名古屋大学助手、助教授を経て、2009年にエコトピア科学研究所教授、2015年より未来材料・システム研究所教授、2018年より副所長。専門は計算流体力学および流体工学。固体・気体・液体が相互作用を及ぼし合いながら流れる混相流に関する、流動機構の解明と制御、工業利用などに取り組んでいる。流体エネルギーを利活用したIOTセンサと発電用超小型水車の開発・社会実装にも注力している。

Tomomi Uchiyama is currently the vice-director of the Institute of Materials and Systems for Sustainability (IMaSS) at Nagoya University. He received a DC degree from Nagoya University, Japan, in 1987. After serving as a research associate and an associate professor at Nagoya University, he was promoted to a professor of the EcoTopia Science Institute at Nagoya University in 2009, then became a professor of IMaSS in 2015. He became the vice-director in 2018. His research interests include computational fluid dynamics and fluid engineering, with special emphasis on investigating the elucidation, control, and industrial application of multiphase flows in which more than one phase (i.e., solid, gas, or liquid) occurs. He is also devoted to the development and social implementation of IoT sensors and micro-hydraulic turbines that effectively utilize hydraulic energy.

オリジナル web ページ http://www.cirfe.imass.nagoya-u.ac.jp/

CIRFE

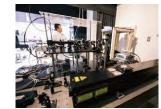
未来エレクトロニクス集積研究センターは、 窒化ガリウム、ナノカーボン、炭化ケイ素など のポストシリコン材料を用いたデバイスに代表 される先端的エレクトロニクス研究を推進す ると共に、高度な人材を育成し、未来のエレ クトロニクス産業の基盤を創成することを目 的として、平成27年10月に設立されました。 センターは7つの部から構成されており、各部 において、それぞれの分野の世界トップクラス の専門教員およびインフラを揃えております。 材料・計測・デバイス・応用システムの基礎科 学から出口まで、一貫した連携研究・教育体 制を構築します。

世界に見てもほとんど試みのない省エネデバイス研究を通じて、21世紀のものづくりを 主導する高度な人材の育成を進めます。 The Center for Integrated Research of Future Electronics (CIRFE), established in October 2015, engages in leading-edge electronics research—including research in the untraversed area of devices with gallium nitride, carbon nanotube, SiC and other post-silicon materials—while also cultivating top-notch human resources to lay the foundations of the future electronics industry. CIRFE is divided into seven sections, each staffed with instructors who serve as leading specialists in their field, and equipped with outstanding research infrastructure. The Center's fully integrated joint research and education system covers everything from basic scientific education on materials, measuring, devices, and applied systems through to the completion of student educational courses. Through research on energy-saving devices, an area in which very little experimentation has been carried out anywhere in the world, CIRFE strives to foster well-trained human resources who will lead the field of manufacturing in the twenty-first century.

未来デバイス部

Device Innovation Section

未来デバイス部では、窒化ガリウムや炭化ケイ素な どのワイドギャップ半導体やナノカーボン材料を中心と した先端エレクトロニクス材料について、新規結晶成 長手法の確立およびプロセス開発を行い、新機能デ バイス創成を目指しております。結晶成長からデバイ ス設計・作製・評価に至るまで一貫した研究を行うこ とで、トータルプロセスの確立を目指します。


The Device Innovation Section aims to develop devices with new functions by establishing new crystal-growth methods and process development for cutting-edge electronics materials with a central focus on wide-bandgap semiconductors, such as gallium nitride and silicon carbide, and nanocarbon materials. A fully integrated research approach enables us to establish a unified process from crystal growth to device design, manufacturing, and assessment.

■ 結晶成長 / Crystal Growth

次世代エレクトロニクスの基盤となる窒化ガリウム系化合物半導体デバイスを実現するためのキラー欠陥の無い基板用バル ク結晶成長から、次世代量子構造、ナノ構造の成長及び加工法まで、広範に研究を行っています。

To realize gallium nitride semiconductor devices that will serve as the foundation of next-generation electronics, we carry out a wide variety of research from the growth of bulk crystals for use as substrates free of killer defects to the growth and processing of next-generation quantum structures and nanostructures.

センター長

天 野

Director of the Center

AMANO, Hiroshi Professor

研究課題 **Project**

窒化物系半導体デバイスの創成とシステム応用

Generation of noble nitride-based devices and their contribution to the development of new infrastructure

笹岡 特任教授

千秋

SASAOKA, Chiaki Designated Professor

研究課題

窒化物系半導体の結晶およびデバイスの研究

Study on nitride semiconductor crystal and devices

冨田 大輔

TOMIDA, Daisuke

特任准教授

Designated Associate Professor

研究課題

超臨界アンモニアを用いた窒化物結晶作製プロセス の開発

Development of fabricating process of nitride crystals using supercritical ammonia

瀬奈 ハディ SENA, Hadi

Researcher

ポスト5Gに向けたレーザを用いた極薄GaN(基板、プ ロセス、デバイス)の開発

Development of ultra-thin GaN (substrates processes and devices) using laser for post 5G

優太 FURUSAWA, Yuta

研究員

Researcher

ワイドバンドギャップ半導体(BAIGaInN)の結晶成長、 デバイス機能の研究

Study on crystal growth and device function of wide bandgap semiconductor (BAIGaInN)

渡邉浩崇 WATANABE, Hirotaka

研究員

Researcher

未来デバイス実現のための高品質窒化物半導体結晶 成長の研究

High quality nitride semiconductor crystal growth for future devices

特任教授

KUMAGAI, Yoshinao Designated Professor

研究課題

高純度GaNバルク結晶の気相成長技術の研究

Investigation of vapor phase epitaxy of high-purity GaN bulk crystal

Project

本田 HONDA, Yoshio 准数授 Associate Professor

研究課題

窒化物半導体による高機能デバイス創生

Creation of sophisticated devices based on

新田州吾

NITTA, Shugo

特任准教授

Designated Associate Professor

研究課題

革新的窒化物半導体結晶成長技術と未来デバイスの 創出

Creation of innovative nitride semiconductor crystal growth technique and future devices

藤元 直樹 FUJIMOTO, Naoki

研究員

Researcher

高品質GaNバルク結晶の成長技術の研究

Project

Research of growth technology of high quality GaN bulk crystal

叶 研究員

正 YE, Zheng Researcher

研究課題

高分解質量分析による窒化物半導体MOVPE気相反 応解析と成長素過程の解明

Project

Growth mechanism and gas phase reaction on Nitride semiconductor MOVPE analyzed by high-resolution mass spectrometry

スブラマニアム アルルクマラン 客員教授

SUBRAMANIAM, Arulkumaran

Visiting Professor

太田 客員教授

OTA, Koichi Visiting Professor

秩父 客員教授

重 英 CHICHIBU, Shigefusa F. Visiting Professor

伊藤 健治 ITO, Kenji 客員准教授

Visiting Associate Professor

Visiting Associate Professor

成 田 客員准教授 哲生 NARITA, Tetsuo

分島

WAKEJIMA, Akio Visiting Associate Professor

大祐 河口 招へい教員

KAWAGUCHI, Daisuke Visiting Faculty

石川由加里 ISHIKAWA, Yukari

Visiting Professor

須賀 唯知 客員教授

SUGA, Tadatomo Visiting Professor

NAKAMURA, Tohru Visiting Professor

正史 加藤 客員准教授

中村

客員教授

KATO, Masashi Visiting Associate Professor

智博 西 谷 客員准教授

NISHITANI, Tomohiro Visiting Associate Professor

飯田

IIDA, Kazuyoshi Visiting Faculty

大至 木村 KIMURA, Taishi 招へい教員 Visiting Faculty

碓 客員教授 USUI, Akira Visiting Professor

只友 TADATOMO, Kazuyuki 客員教授 Visiting Professor

劉 玉 LIU, Yuhuai 客員教授 Visiting Professor

中村 大 輔 NAKAMURA, Daisuke 客員准教授 Visiting Associate Professor

守山 実希 MORIYAMA, Miki 客員准教授 Visiting Associate Professor

伊ヶ崎 泰則 IGASAKI, Yasunori Visiting Faculty

和仁 陽太郎 WANI, Yotaro 招へい教員 Visiting Faculty

■ 表面·界面/Surface/Interface

環境・エネルギー問題を解決するためのパ ワーデバイス、太陽電池、LED、セラミックス、超 伝導、さらには創薬に役立つ タンパク質結晶ま で、これら全てが作られている「結晶成長」を理 解し利用することで、世界を変革させる様々な 材料、いまだ人類の知り得ない未来材料の実 現を目指しています。

The materials used for power devices, solar batteries, LEDs, ceramics, and superconductors that help solve environmental and energy problems, as well as proteins required for drug development analysis, have crystal structures. By increasing our understanding and utilization of crystal growth, we aim to develop various materials that may change the world and produce materials that we have never encountered before.

Vice-Director of the Center

宇治原徹 UJIHARA, Toru Professor

研究課題

Project

結晶成長メカニズムに基づく新規プロセスの追求と 機能性高品質結晶(SiCやAINなど)の実現 Study on a novel processes based on crystal growth theory for high-quality crystal of functional materials (SiC, AIN, etc.)

田川美穂 TAGAWA, Miho Associate Professor

solution method

准教授

生体分子の自己集合能力を利用した新規機能性ナノ

結晶材料の創製 Project

The Creation of Bio-inspired Novel Functionalized Nanomaterials

原田

HARADA, Shunta

准教授

Associate Professor

研究課題

結晶材料の欠陥制御

Proiect

Control of defects in crystalline materials

朱

特任助教

ZHU, Can

Designated Assistant Professor

研究課題 Project 溶液法による高品質SiC結晶のバルク成長 Bulk growth of high quality SiC crystal by

塚本勝男

TSUKAMOTO, Katsuo

Visiting Professor

陱 Ш 客員教授

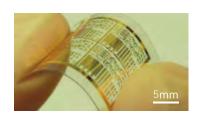
SUYAMA, Akira Visiting Professor

客員准教授

KUTSUKAKE, Kentaro Visiting Associate Professor

郁 万 研究機関研究員

YU, Wancheng


横森 真麻 研究機関研究員

YOKOMORI, Maasa Researcher

■ ナノ材料デバイス / Nanomaterial devices

ひとと調和する未来型エレクトロニクスの創世を目指し、カーボンナノチュー ブに代表されるナノ構造材料の特徴を生かして、透明で自在に形の変わる電 子デバイスの実現に取り組んでいます。人体の軟組織と力学的にも生化学

的にも親和性のあるバイオセンサや信号 処理回路を集積したウェアラブルデバイ スを実現し、エレクトロニクスとバイオ・医 療との融合を進め、ひとが健康で幸せに 生きる明るい社会の構築に貢献します。

Aiming at the creation of future electronics with affinity for human beings, we are striving to realize electronic devices that are transparent and flexible, taking advantage of the characteristics of nanomaterials such as carbon nanotubes. We will realize wearable healthcare devices that can be placed in direct contact with soft tissue of the human body.

大野 雄高 OHNO, Yutaka

Professor

炭素系ナノ材料に基づく省エネルギー型先端デバイ スの創出

Project

Development of energy-saving advanced electron devices based on nano-carbon

■ エネルギー変換デバイス / Energy Conversion Device

宇佐美 徳隆 USAMI, Noritaka

教授《工学研究科》

Professor

資源が豊富な元素を利用した先端複合技術型太陽電

Advanced photovoltaic cells with earth-abundant materials

■ 先端デバイス / Advanced Device

SUDA, Jun

教授《工学研究科》

Professor

GaNパワーデバイス

Project

GaN Power Devices

堀田 昌宏

HORITA, Masahiro

准教授《工学研究科》

Associate Professor

ワイドバンドギャップ半導体の物性解明

Project

Characterization of material properties of wide

bandgap semiconductors

■ ナノ電子デバイス / Nanoelectronic Device

NAKATSUKA, Osamu

教授《工学研究科》

省電力ナノ電子デバイスのためのIV族半導体薄膜お よび界面制御技術の研究開発

Research and development of thin film and **Project** interface engineering technologies of group-IV semiconductors for low-power consumption nanoelectronic devices

機能集積テバイス/Semiconductor Engineering and Integration Science

MIYAZAKI, Seiichi Professor

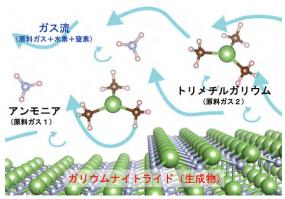
教授《丁学研究科》

研究課題

先端電子デバイス開発に向けた材料プロセス・評価

に関する研究

Study on Materials Processing and Characterization for Advanced Electron Devices


マルチフィジックスシミュレーション部

Multiphysics Simulation Section

マルチフィジックスシミュレーション部では原子レベル の第一原理計算とマクロスコピックな流体力学を熱力 学解析を介して融合するマルチフィジックス体系に基 づく予言可能な結晶成長のシミュレーションの実現を目 指して研究を行っています。その他、窒化ガリウム系新 規パワーデバイスの提案も行っています。

The Multiphysics Simulation Section is engaged in research with the aim of realizing multiphysical-system-based predictable crystal-growth simulations that integrate first-principles calculation with macroscopic fluid dynamics via thermodynamic analysis. Additionally, this section is pursuing proposals for new gallium-nitride-based power devices.

■ フロンティア計算物質科学/Frontier Computational Material Science

マルチフィジックスで解き明かす結晶成長過程 Crystal growth process clarified by the multi-physics simulation.

SHIRAISHI, Kenji

Professor

半導体結晶成長の計算シミュレーションによる研究 Computational Studies on Semiconductor

Ш 特任教授

OSHIYAMA, Atsushi Designated Professor

量子論計算科学による結晶成長および表面・界面物 性の研究 First-principle study on thin-film growth and

surface/interface properties

KANGAWA, Yoshihiro Designated Professor

研究課題 半導体結晶成長プロセスの理論解析

Modeling and simulation of semiconductor

芳松 克則 YOSHIMATSU, Katsunori Associate Professor

研究課題 結晶成長シミュレーションの流体力学的研究

Computational Science on Crystal Growth from a Viewpoint of Fluid Dynamics

ARAIDAI, Masaaki

Assistant Professor

- 原理電子状態計算手法による表面・界面物性の 研究

First-Principles Study on Electronic Property of

原嶋 HARASHIMA, Yosuke

Designated Assistant Professor 特任助教

研究課題 半導体結晶成長の計算シミュレーションによる研究 Computational Studies on Semiconductor Crystal **Project**

井本 文裕 IMOTO, Fumihiro

Researcher

-原理電子状態計算手法による表面・界面物性の 研究

First-Principles Study on Electronic Property of Surface and Interface

長川 健太 CHOKAWA, Kenta

Researcher

- 原理電子状態計算手法による表面・界面物性の 研究

First-Principles Study on Electronic Property of Surface and Interface

バレンシア ユベルト VALENCIA, Hubert

Researcher

研究課題 GaNのMOVPE成長の第一原理シミュレーション

First Principles Simulations of GaN MOVPE

ブイシキエウミ BUI, Thi Kieu My

Researcher

GaNのMOVPE成長の第一原理シミュレーション

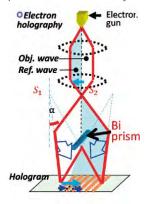
First Principles Simulations of GaN MOVPE

先端物性解析部

Materials Nano-Characterization Section

電子顕微鏡・電子線ホログラフィーを用い た、動作状態におけるデバイスのナノスケール・ オペランド解析技術を開発し、「デバイス動作 の直接計測 | や、半導体界面の電子構造の 電界応答計測を通じた「界面電子物性」研究 を主なテーマとして研究を進めています。

The Materials Nano-Characterization Section develops nanoscale operand analysis techniques for semiconductor devices under operating conditions using electron microscopy and electron holography. These efforts are part of research centered on themes such as interface electronic properties involving direct measurement of device operations and electric-field response measurements for semiconductor interface electronic structures.


■ ナノ電子物性 / Nano-Electronic Materials

原子分解能 電子顕微鏡分析

Electron microscopy analysis at atomic resolution

Electron holography nano-scale potential distribution analysis

動作状態 ナノディバイス解析

Analysis of nano-devices under operating condition

Potential map (holography)

Potential map (Simulation) Simulated potential

高分解能電子顕微鏡・ホログラフィーを用いた、 動作状態のナノスケールトランジスタ内部のポテンシャル可視化

Direct electrostatic potential mapping in nano-scaled FET under operation mode using electron holography

五十嵐 信行 IKARASHI, Nobuyuki

ノ物性研究と先端電子顕微鏡法による革新的デバ イス研究開発

Nano-science and advanced electron microscopy for device innovation

全買 NAGAO, Masahiro 長尾 准教授

Associate Professor

新規磁気デバイス開発に向けた先端電子顕微鏡法に よる物性解析

Analysis of Magnetic Properties by Advanced Electron Microscopy toward the Development of New Devices

狩野 絵美 KANO, Emi

Assistant Professor

最先端電子顕微鏡法による窒化ガリウム(GaN)を中心とした窒化物半導体の物性解析

Advanced electron microscopy analysis of GaN and other nitride semiconductors

田中 信夫 TANAKA, Nobuo

招へい教員(名誉教授)

Professor Emeritus

システム応用部

System Applications Section

ハイブリッドカーや電気自動車、電力インフラ、さ らには次世代航空機で使用される電力変換器や 回転機(モータ)の高効率化、小型軽量化を目的 として、パワー半導体分野、制御分野、磁気分野 を融合したパワーエレクトロニクス技術の応用研究 を行います。また、窒化ガリウム(GaN)の特徴を活 かした高周波機器応用に向けての研究も行って います。

For the purpose of realizing high-efficiency, small, and lightweight power converters and motors used in hybrid vehicles, electric vehicles, power infrastructures, and next-generation airclafts, we carry out applied research on power electronics technology by integrating fields related to power semiconductors, controlling technology, and magnetic applications. We also conduct researches for RF applications focusing on the advantages of gallium nitride (GaN) devices.

■ パワーエレクトロニクス / Power Electronics

研究室で独自に開発した観光 用電気自動車(インホイール ータ搭載、キャパシタ充電に より従来のバッテリ搭載時には 充電時間が5時間かかるのに 対して4分で満充電可能)

Sightseeing electric vehicle developed in our laboratory (equipped with in-wheel motors, can be fully charged by capacitor charging in 4 min compared with 5 h using conventional batteries)

Automatically Balanced 3 Phase LLC Converter

Input Voltage: 380V Output Power: 1.6 k W SW Frequency: 200 k Hz k Hz Power Density: 3.56W/cm3

車載用を想定して、 GaNパワー半導体を用いて 世界最高電力密度(3W/cc以上)の 電力変換装置の実機構築を実現

Practical automobile power converter with highest power density in the world (3 W/cc or more) realized using GaN power semiconductor

山本 真義 YAMAMOTO, Masayoshi

Professor

GaN & SiCパワー半導体モジュール技術とその産業応

Project

GaN and SiC power semiconductor module techniques and its industry applications

新井 大輔 ARAI, Daisuke

研究員

Researcher

パワーエレクトロニクス回路に使用されるGaNデバイ 研究課題

スの挙動の解析と最適化 Analysis and optimization of the behavior of GaN devices used in power electronic circuits

有弘 KAMIYA, Arihiro

研究員

Researcher

GaN & SiCパワー半導体モジュールの実装技術開発と その産業応用

Project

Research of electronics packaging technologies for GaN and SiC power semiconductor module and its industry applications and its industry applications

重 松 SHIGEMATSU, Koichi

研究員

Researcher

パワーエレクトロニクス関連分野のシステムシミュ レーション技術開発 Research of advanced system simulation for Power Electronics and it's applications

セナナヤケ ティラクアナンダ SENANAYAKE, Thilak Ananda

客員教授

研究員

Researcher

GaN半導体素子を用いた高周波無線電力変換回路

High Frequency Wireless Power Conversion Circuit using GaN Semiconductor Devices

佐滕 SATO, Shinji

HOSOTANI, Tatsuya Visiting Professor

MOSTAFA, Noah Visiting Associate Professor

客員教授 Visiting Professor

■ 高周波回路/RF Circuits

無線エネルギー伝送や次世代無線通信等のマイクロ波・ミリ波応用を目的として、新規回路方式や要素デバイスの基本性能向 上に向けた研究等を行っています。窒化ガリウム(GaN)ならではの特徴を活かしきることで、エネルギー消費量の大幅な削減を目 指し、便利さと持続可能性を両立する社会の実現に貢献します。

RF circuits group conducts researches of new circuit technology and the basic performance improvement of the elementary devices, aiming for micro- and millimeter-wave applications such as wireless energy transfer, next generation wireless communication systems, etc. By taking full advantages of gallium nitride (GaN) devices, we aim to dramatically reduce the energy consumptions and contribute to the realization of the society coping both convenience and sustainability.

原 HARA, Shinji 特任教授 Designated Professor

マイクロ波・ミリ波応用の為のGaNに適した回路設計技術

Circuit design technologies using GaN for Project

microwave & millimeter-wave applications

鈴木 麻子 SUZUKI, Asako

研究員 技術

Researcher マイクロ波・ミリ波応用の為のGaNに適した回路設計

研究課題

Circuit design technologies using GaN for microwave & millimeter-wave applications

森 淳 MORIWAKI, Atsushi Researcher

研究員

GaN HEMTを用いたマイクロ波、ミリ波回路のシミュ レーション精度向上の研究

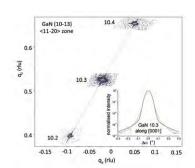
Micro- and millimeter-wave applications tree of GaN

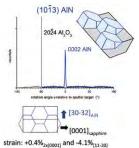
Improving simulation accuracy of GaN devices **Project** for microwave and millimeter-wave applications

GaNのマイクロ波・ミリ波応用の樹

国際客員部

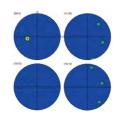
International Research Section

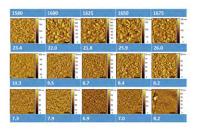

先端エレクトロニクス材料を用いたデ バイスについて、様々なシステムへの実 装を検討し社会実装を目指した応用研 究を行います。


In the area of devices utilizing cutting-edge electronics materials, this section focuses on the integration of such devices into various systems and pursues applied research with an eye toward real-life applications throughout society.

■ 新しいⅢ族窒化物系の開発/New III-Nitride Approaches

未来デバイスの実現にはⅢ族窒化物半導体の開発促進 が不可欠です。特にデバイスの性能限界を決定付ける基板 やテンプレートの技術開発が重要となります。これらをベース として新規デバイスの原理実証を行うことで、デバイスの限 界性能を引き出す研究開発を行います。


Future devices needs further III-Nitride semiconductor development. This is especially true for the substrates and templates, since those ultimatively limit the performance. We explore these limits also by making proof of principle devices.


緑色LED用GaN結晶(10-13)面上の基底面積層欠陥密度を推定するための高分解能X線回折を用いた逆格子空間マップ

Reciprocal space map using high-resolution X-ray diffraction to estimate the basal plane stacking fault density on (10-13) GaN crystals for green LEDs

指向性スパッタリングと高温ア ニーリングで合成されたサ ファイア 上の 単相 AIN (10-13)面の配向性

Orientation of single phase (10-13) AIN on sapphire produced by directional sputtering and high-temperature annealing.

3つの核形成時間と様々なアニーリング温度で、有機金属気相成長法により形成されたAIN 膜(10-10)面の原子間力顕微鏡画像。図中の数字は粗さ(nm)を示す。

Atomic force microscope images of (10-10) AIN films prepared by metal-organic vapour phase epitaxy with three different nucleation times and annealed at different temperatures. Numbers indicate roughness in nanometer.

プリストフセク マーコス PRISTOVSEK, Markus 特任教授 Designated professor

Better device materials from a better

understanding of crystal growth

■ 結晶成長/Crystal Growth

Project

グレアム サムエル _{客員教授} **GRAHAM, Samuel** Visiting Professor

ジター ズラトコ

SITAR, Zlatko Visiting Professor

ソンテヨン

SEONG, Tae-Yeon

チョウドリスラバンティ

CHOWDHURY, Srabanti Visiting Professor

客員教授

Visiting Professor

H_ \$5,5757

ボコウスキ ミハウ スタニスワフ

BOĆKOWSKI Michał Stanisław Visiting Professor リートノソノ

LEE, Dong Seon Visiting Professor

産学協同研究部

Industry-Academia Collaborative Research Section

産学協同での研究開発の効率化を促進します、本研究所での成果を社会実装するための橋渡しを行います。

This section aims to boost the efficiency of collaborative industry-academia research and development activities, and also serves as a mediator to help realize actual applications of CIRFE achievements and results in society.

研究戦略部

Research strategy section

窒化ガリウムの社会実装に向けた調査研究を行い、研究戦略を策定します。CIRFEの6つの部の連携を強化し、かつ学内外のグループも含む研究グループを組織して研究を推進します。本学学内コンソーシアムであるGaN研究戦略室の事務局機能も担います。

This section is established to promote implementation of gallium nitride technologies to our society. It organizes and promotes industry-academia collaborations as well as joint research projects. This section also provides a function of secretariat of GaN research strategy office of Nagoya University.

須 田 淳 リーダー・教授《工学研究科》 SUDA, Jun Professor 新井 副リーダー・特任教授

学 ARAI, Manabu Designated Professor

淳

笹 岡 千特任教授《兼任》

SASAOKA, Chiaki Designated Professor

佐 藤 浩 哉

主席URA《産連本部》

SATO, Hiroya University Research Administrator 水野 紘 主幹URA《産連本部》


MIZUNO, Koichi University Research Administrator

藤本裕雅

FUJIMOTO, Hiromasa
University Research Administrator

上 主任URA《産連本部》

YAMAGUCHI, Atsushi University Research Administrator

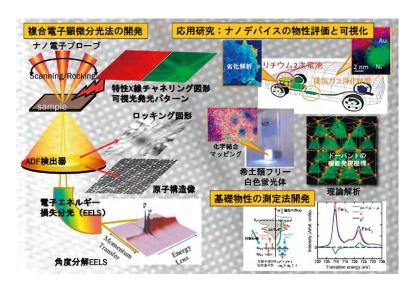
AMTC

高度計測技術実践センターは、これまでの研究所のもつユニークな高度計測技術シーズを活用し、高度計測技術の開拓発展、機器共用と共同研究および人材育成を行うための組織として、平成27年4月に設立されました。本センターでは、所内の超高圧電子顕微鏡施設と先端技術共同研究施設を核に、研究所と関連する工学研究科、理学研究科、環境学研究科、シンクロトロン光研究センターおよび学外の知の拠点あいちシンクロトロン光センター、核融合科学研究所などとの連携の下、電子顕微鏡計測、電磁波計測、素粒子計測、X線分光計測、ナノ加工計測の5つの分野の高度計測技術の実践と人材育成を推進しています。

This Institute has developed unique and advanced measurement technologies in the High Voltage Electron Microscope Laboratory, the Research Facility for Advanced Science and Technology, and other facilities of the Institute. The Advanced Measurement Technology Center, which was established in April 2015, aims to explore and develop novel measurement techniques, operate multiuser instruments, provide opportunities for collaborative research, and train highly skilled scientists and engineers. The Center is operated jointly by Nagoya University graduate schools and research centers with ties to this Institute, including the Graduate Schools of Engineering, Science, and Environmental Studies, and the Synchrotron Radiation Research Center, and external institutes, such as the Aichi Synchrotron Radiation Center of the Knowledge Hub Aichi and the National Institute for Fusion Science. The Center is divided into the following five sections: Electron Nanoscopy Section, Electromagnetic Wave Measurements Section, Elementary Particle Measurements Section, X-Ray Spectroscopy Section, Nanofabrication & Characterization Section.

電子顕微鏡計測部

Electron Nanoscopy Section


電子顕微鏡を用いた精密構造解析法および物性測定法として、原子レベル空間/電子構造解析、収束電子回折法によるナノメーター領域の格子歪みの精密測定、電子線トモグラフィーによる三次元構造解析、電子線ホログラフィーによる電磁場の可視化、ガス環境下の化学反応その場観察/分析などの技術を発展させます。

In this section, techniques for detailed structural analyses and property measurements using electron microscopes are developed. Topics include atomic-level analysis of spatial and electronic structures, precise measurements of nanoscale lattice distortions using convergent beam electron diffraction, three-dimensional structural analysis with electron beam tomography, visualization of electromagnetic fields using electron holography, and analysis of chemical reactions under different gas environments.

■ ナノ顕微分光物質科学 / Nanospectroscopic Materials Science

今日の様々なナノテク関連材料では、機能元素と呼ばれる不純物添加、それに伴う格子欠陥形成、または表面や界面構造の制御などによって劇的に材料の性質を向上させている。我々のグループでは最先端の透過型電子顕微鏡・電子分光と「インフォマティクス」技術を組み合わせて、このようなナノ領域の格子欠陥を正確に計測・分析する手法を開発し、材料機能発現のメカニズムと新規材料開発のための指導原理を解明することを目的としている。対象は、磁性発現の基本物理量である磁気角運動量のナノ領域測定という基礎研究から、リチウム二次電池、自動車排気ガス浄化触媒、セラミックス素子、フェライト磁石にわたる広範な実用材料分析にまで及ぶ。

In current practical materials related to nanotechnologies, defect formation associated with impurity doping and surface/interface structure control drastically improve their physical properties. Our research group is developing precise nano-area analysis methods using advanced electron spectroscopy/microscopy in combination with 'informatics' techniques to clarify the mechanisms behind the material functions and the guiding principles in the development of novel materials. Our research covers topics from fundamental physics such as measuring magnetic moments in sub-nanometer areas to the practical analysis of materials such as lithium ion batteries, catalysts for purifying automotive exhaust gas, ceramic devices, and ferrite magnets.

複合電子顕微分光による ナノデバイス分析技術の開発・応用 ナノ顕微分光物質科学/武藤俊介・大塚真弘

R&D of Sub-nanometric Scale Analysis by Integrated Spectroscopic Microscopy Nanospectroscopic Materials Science / S. Muto & M. Ohtsuka

武藤 俊介 MUTO, Shunsuke

教授

Professor

研究課題

電子顕微分光を活用したエネルギー・デバイスのナノオーダー評価および開発に関する研究 Study on nano-metric analysis and

Study on nano-metric analysis and development of energy-related devices using electron nano-spectroscopic methods

大塚 真弘 OHTSUKA, Masahiro

Lecturer

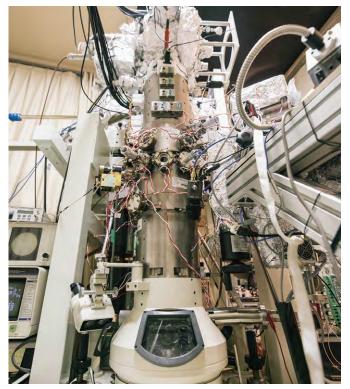
研究課題 Project

電子チャネリング効果を活用したサイト選択的定量分析手法の開発とその実用材料分析への応用 Development of Quantitative Site-Specific Analysis Method for Practical Crystalline Materials Using Electron Channeling Effects

岡島 敏浩 OKAJIMA, Toshihiro

高橋

可昌 TAKAHASHI, Yoshimasa
Visiting Associate Professor


樋口 哲 元

HIGUCHI, Tetsuo
Visiting Associate Professor

AMI

軌道角運動量やスピンを制御した新しい電子ビームをもちいた次世代の電子顕微鏡装置および分析手法の開発を行っています。独自開発したスピン偏極パルス電子源および電子線ダイレクト検出器を備えた電子顕微鏡装置は世界最高レベルのエネルギー分解能および時間分解能を示し、ナノスケールの超高速現象の可視化などへの応用研究を進めています。また、電子回折や電子エネルギー損失分光などあらゆる電子顕微鏡技術を最大限に活用し、半導体パワーデバイスの欠陥解析や電池材料のオペランド観察など実用材料の精緻な評価も行っています。

We have developed next-generation electron microscopes using innovative electron beams such as electron vortex beams and spin polarized beams. Our newly developed electron microscopes show the world's highest level of energy- and time-resolutions, and have been applied to the visualization of high-speed phenomena in nanoscale. Also, we have performed characterization of actual materials such as defect analysis of power devices and operand TEM observation of battery materials by making best use of various electron microscopy techniques.

本研究グループで開発したスピン偏極パルス電子顕微鏡 Spin-polarized ultrafast transmission electron microscope developed by our group

副所長 Vice - Director **齋 藤 晃 SAITOH, Koh** 教授 Professor

革新的電子ビームをもちいたナノ材料評価技術の 開発

Project

Development of Nano-Characterization
Methods Using Innovative Electron Beams

桒原 真人 KUWAHARA, Makoto ^{准教授} Associate Professor

研究課題 コヒーレントなスピン偏極パルス電子線による新規分析手法の創出

Advanced Electron Microscopy Using Coherent Spin-Polarized Pulse Beam

研究課題 電子顕微鏡を用いた先端材料のための新しい観察技 術の開発

Project Development of New Imaging Techniques for Frontier Materials using Electron Microscopy

矢野 力三 YANO, Rikizo By Assistant Professor

切教 ASSISIAITI Professor Tropiessor Tropies

Project Project Investigation of novel and exotic phenomena on topological materials

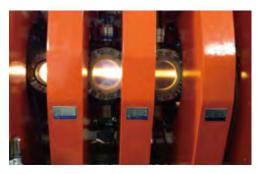
内田 正哉 UCHIDA, Masaya

UCHIDA, Masaya Visiting Professor 平山

HIRAYAMA, Tsukasa
Visiting Professor

山 崎

頂 YAMASAKI, Jun

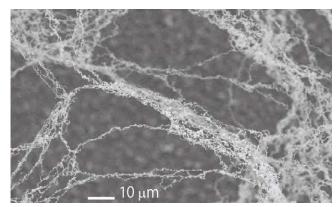

Visiting Associate Professor

電磁波計測部

Electromagnetic Wave Measurements Section

プラズマ中の原子・分子からの線スペクトル観察によるプラズマ診断など、発光体や材料からの電磁波、反射光などの計測・診断技術を開発することにより、プラズマ核融合などのエネルギーシステムの制御技術の発展に貢献します。

This section is dedicated to the advancement of techniques to control energy systems, such as nuclear fusion using plasmas. Research is focused on developing methods to measure line emissions from atoms and molecules in plasmas and reflected light from light-emitting bodies and other materials.



直線型プラズマ装置 NAGDIS-II におけるヘリウムプラズマ Helium plasma in the linear plasma device NAGDIS-II

■ プラズマエネルギー工学 / Plasma Energy Engineering

プラズマ材料相互作用は、核融合実現に向けて重要な課題の1つであり、熱粒子負荷の制御及び、材料損傷の理解に向けて模擬実験装置を利用した研究を行っている。さらに、プラズマと金属材料の相互作用を利用したナノ構造化等の表面改質による新たな材料創成と光触媒等の応用に関する研究を行っている。

Plasma-material interaction is one of the important tasks for achieving nuclear fusion, and we are conducting research using plasma devices simulating the fusion conditions to control thermal particles and heat loads and to understand material damage. In addition, utilizing surface modification by plasmas, we are trying to fabricate novel nanostructured materials for application as, for example, photocatalysts.

ヘリウムプラズマ照射により形成されたタングステンのナノワイヤー Tungsten nanowires grown by an exposure to a helium plasma.

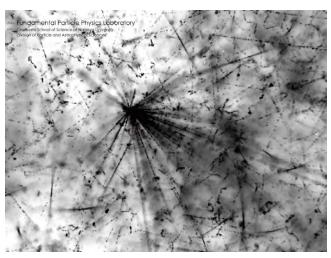
梶田

信

KAJITA, Shin Associate Professor

研究課題

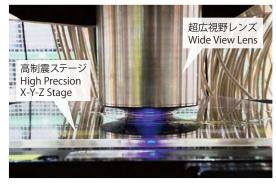
先端的エネルギー源における粒子及び熱の輸送現 象とその制御


Heat and Particle Transport Phenomena and Its Control in Advanced Energy Sources

素粒子計測部

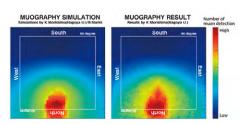
Elementary Particle Measurements Section

独自に開発した原子核乾板技術を駆使して、宇宙から地上へと降り注ぐ宇宙線に含まれる、電荷を持つ素粒子ミューオンを利用して巨大構造物(ピラミッド、原子炉、溶鉱炉、火山など)の内部を透かし撮りする応用技術「ミューオンラジオグラフィ」の開発を行います。


This section specializes in the development of muon radiography, which is an applied technology to obtain images inside extremely large structures (e.g., pyramid, nuclear reactor, blast furnace, volcano). This technology makes use of muons, which are elementary particles found in charged cosmic rays from outer space that hit the Earth, and other in-house conceived techniques.

高エネルギーの宇宙線が乳剤中の原子と衝突して起こった反応をとらえた 顕微鏡写真

This micrograph showing the reaction that occurred when high-energy cosmic rays collided with atoms in the emulsion.


■ 実験観測機器開発 / Instrument Development

超高速原子核乾板読み出し装置 Hyper Track Selector

クフ王のピラミッド内の回廊に 原子核乾板を設置する様子 Nagoya University emulsion film setup in the descending corridor

素粒子ミューオンを使った計測のシミュレーションと 測定結果の比較

Comparison of muography simulation and results for descending corridor

光廣 NAKAMURA, Mitsuhiro

最新原子核乾板技術を駆使した大型構造体の内部状 態解析技術の開発

Research and Development of Inner Status Investigation Technology of Large Scale Structure Objects by Using Modern Nuclear Emulsion Techniques

勝久 OHZEKI, Katsuhisa

Designated Professor

大型構造物を高速に透視のための高度原子核フィル ム技術の開発

R&D of advanced nuclear emulsion film technology for high speed muon radiography

佐藤 修 SATO, Osamu

特任講師

Designated Lecture

特任助教《理学研究科》

ュートリノ振動現象の解明、ダークマター探索と写 真乳剤による応用研究 Neutrino Oscillation, Dark Matter Search

Experiment and Researches with Tracking by

邦博 MORISHIMA, Kunihiro

革新的超高解像3次元放射線イメージング 検出器 「原子核乾板」の技術開発とその多分野への応用 Development of Innovative High-Resolution Three-Dimensional Radiation Detector "Nuclear Emulsion" Technology and Its Applications

Designated Assistant Professor

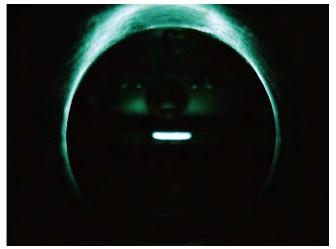
宏紀 ROKUJO, Hiroki 六條 特任助教

Designated Assistant Professor

原子核乾板を用いた宇宙ガンマ線の大口径・高解像・ 偏光観測の実現と高エネルギー天体現象の研究 R&D on Precise Observation of Cosmic Gamma Rays and High-Energy Astrophysical Phenomena with Nuclear Emulsion Technologies

Researcher

晃 NISHIO, Akira

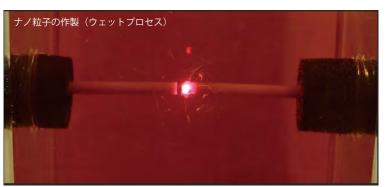

研究機関研究員

X線分光計測部

X-Ray Spectroscopy Section

知の拠点あいちシンクロトロン光センターの電子蓄積リング及び分光ビームラインを活用しX線分光技術の高度化を図るとともに、 新素材や医薬品開発などへの応用研究を進めます。

In this section, innovative X-ray spectroscopy techniques using the electron storage ring and spectroscopy beamlines at the Aichi Synchrotron Radiation Center of the Knowledge Hub Aichi are pursued. In addition, applied research aimed at developing new materials and pharmaceuticals is conducted.



シンクロトロン放射光の蛍光粉末からの光 Synchrotron light from fluorescence powder

あいちシンクロトロン(BL6N1)の放射光 XAFS-XPS 分析装置 XAFS-XPS analysis system in Aichi SR (BL6N1)

■ エネルギー・相界面材料科学 / Energy and Phase Interface Materials Science

凝集しないナノ粒子 Nanoparticles that do not aggregate

副センター長

Vice-Director of the Center

笹 井

客員教授

YAGI, Shinya

Professor

ナノ粒子と薄膜表面から成る機能性材料の開発と応

Developments and Applications of Functional Materials Consisting of Nanoparticles and Thin Film Surface

SASAI, Ryo

Visiting Professor

池永 英司 IKENAGA, Eiji 准教授

Associate Professor

環境および省エネルギー材料における先端X線分光 技術開発

Development of Advanced X-ray Spectroscopy Techniques for Environment and Energy Conservation Materials

一朗 MIZUMAKI, Masaichiro Visiting Professor 客員教授

吉田

小林 啓介

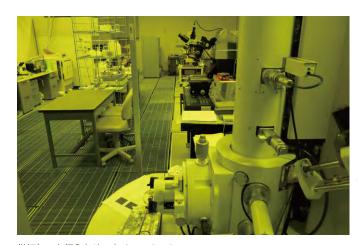
朋子 YOSHIDA, Tomoko

KOBAYASHI, Keisuke

客員教授

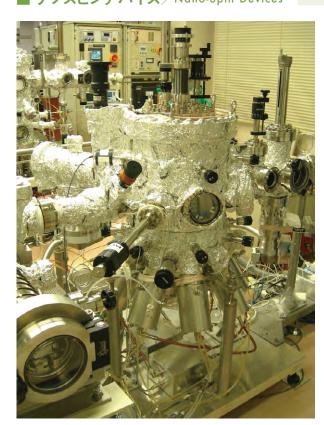
客員教授

Visiting Professor


Visiting Professor

ナノ加工計測部

Nanofabrication & Characterization Section


先端技術共同研究施設に設置されている薄膜作製装 置、微細加工装置、分析・計測装置などの共用装置とク リーンルームを利用して、薄膜形成、ナノ材料作製、ナノ加 工、評価/計測に関する技術の高度化を図り、高機能デ バイス開発に貢献します。

This section develops the state-of-arts techniques of thin-film deposition, nanomaterial synthesis, nanofabrication, and associated measurements and evaluations. Shared instruments and clean room at Research Facility for Advanced Science and Technology are provided for the development of advanced functional devices.

微細加工を行うためのクリーンルーム Micro-fabrication clean room

ナノスピンデバイス/Nano-Spin Devices

8元マグネトロンスパッタ装置 Magnetron sputtering with 8 sources

Director of the Center 加藤

剛志 KATO, Takeshi Professor

機能性磁性薄膜材料および高機能スピントロニクス デバイスの研究開発

Developments of Functional Magnetic Thin Films and Spintronics Devices

大 島

OSHIMA, Daiki

特任助教

Designated Assistant Professor 微小磁気パターン形成手法の開発とその応用

Development of Fabrication Process of Micro Magnetic Pattern and Its Application

大住 克史

OHSUMI, Katsufumi

研究員

Researcher

微細加工プラットフォームを活用した研究開発支援

Research and technical support of

Nano-fabrication Platform

DM

材料創製部門では、様々な素材・材料の物性研究、作製プロセス、組織制御、応用・性能評価、シミュレーションなどを行い、これらの材料をデバイス設計や装置化に結び付ける研究、技術開発を推進しています。既存の物質・資源・エネルギーの効率的利用といった課題にとどまらず、将来のエネルギーシステムや省エネデバイスに役立つ新規材料・先端ナノ材料に関する研究を推進し、長期的な視点に立って省エネ・創エネのための材料創製研究を行います。

The Division of Materials Research (DM) carries out research on various materials and substances, their properties, production processes, structural control, and the evaluation of their performance toward many applications, and also promotes development to design devides to incorporate these materials into device. In addition to research on the improvement of industrial materials, the utilization of resources, and the optimization of energy sources, the DM also promotes cutting-edge research on novel materials and nanomaterials that are expected to be useful in future energy systems, energy-saving devices, and advanced materials systems from a long-term perspective.

誘電体、磁性体、超伝導体、イオン伝導体、可視紫外・光学物性、触媒性といった材料機能の基盤となる諸物性の基礎 及び応用研究を行い、それらの物性の向上、発見によるデバイス化に必要な材料物性の研究を推進します。

The Materials Physics Section carries out fundamental and applied research on dielectrics, magnetic materials, superconductors, ionic conductors, optical properties, catalytic properties, and other material functions. Research on material properties that are necessary to achieve new devices through the enhancement of properties and the discovery of new functions is also performed.

■ 計算流体力学/Computational Fluid Dynamics

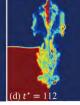
流動現象をコンピュータシミュレーションで解析する、計算流体力学 (Computational Fluid Dynamics: CFD)に取り 組んでいる。とくに、結晶成長に深く関連する、気体・液体・固体が混在して相互作用を及ぼし合いながら流れる、混相流 (Multiphase Flow)のCFDに注力している。複数の種類の液体の界面で生じる移流・拡散・混合を高精度で解析する ためのシミュレーション手法の開発のほか、液体と固体粒子、液体と気泡と粒子の相互作用のシミュレーションに取組んでい る。また、液中における渦を用いた粒子や気泡などの分散相の運動制御方法の開発に関連した実験的研究にも傾注して いる。

We are working on computational fluid dynamics (CFD) to analyze fluid phenomena by computer simulation. In particular, we focus on the CFD of multiphase flow in which gas, liquid, and solid phases coexist and flow while interacting with each other. Multiphase flow is intimately related to crystal growth. In addition to the simulation method used to analyze the convection, diffusion, and mixing of several kinds of liquid at an interface, we carry out simulation of the interaction between liquid and solid particles and among liquids, bubbles, and particles. We are also involved in experimental research on the development of a method of controlling the movement of disperse phases such as particles and bubbles using vortices in a liquid.

副所長 内山

Vice-Director

知実 UCHIYAMA, Tomomi Professor


流体現象の先進的シミュレー ション方法の開発と自

Flow Energy

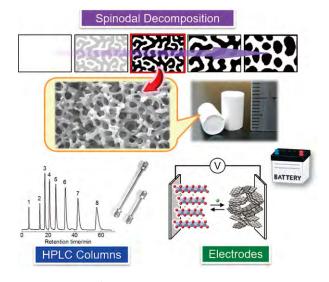
然流体エネルギーの活用 Development of Advanced Simulation Method for Flow Problems and Utilization of Natural

髙牟禮 光太郎

TAKAMURE, Kotaro

Assistant Professor

流体の対流および混合特性を生かした結晶成長プロ セスの高効率化


Efficiency enhancement for crystal growth process utilizing fluid convection and mixing 渦輪がもたらす密度成層流体の混合のシミュレーション Simulation of mixing of density-stratified fluid caused by vortex ring

出川 客員准教授 DEGAWA, Tomohiro Visiting Associate Professor

■ 多孔材料化学 / Porous Materials Chemistry

重合誘起相分離を用いた液相合成を基軸として、無機セラミックスから有機高分子、有機-無機ハイブリッドに至るまで、様々な多孔 質材料の創生および構造制御を行っています。また、制御された多孔構造を有する材料を、分離媒体・吸着剤・触媒担体・電池電 極などへの応用研究を推進しています。分析化学や有機合成、電気化学などの異分野との融合を進め、種々の機能性と細孔特性 の関係について明らかにすることで、環境・エネルギー分野における発展に貢献することを目指しています。

Based on the liquid-phase synthesis utilizing polymerization-induced phase separation, we are developing various porous materials ranging from ceramics, organic polymers to organic-inorganic hybrids. The materials with a controlled porous structure are applied to separation media, adsorbents, catalyst supports and battery electrodes. We aim at revealing the influence of pore property on each functionality by interdisciplinary researches with analytical chemistry, organosynthesis and electrochemistry in order to contribute to the development in energy and environmental fields.

重合誘起スピノーダル分解による多孔質モノリス材料の作製と 分離媒体・二次電池電極への応用

Preparation of porous monoliths by the phase separation method and their applications to HPLC columns and battery electrodes.

副部門長 教授

Vice-director of the Division

NAKANISHI, Kazuki Professor

液相法による多孔質材料の構造制御と応用

Structural Control of Porous Materials via Liquid-Phase Processes and their Applications

長谷川 丈

HASEGAWA, George Designated Associate Professor

多孔質材料の構造制御とその電気化学的応用

Architectural Design of Porous Materials and Their Electrochemical Applications

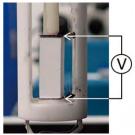
ンベライム パスカル

研究機関研究員

NBELAYIM, Pascal Researcher

陸 泫 研究機関研究員

LU, Xuanming


Researcher

■ ナノ構造制御学/Nanostructure Analysis and Design

様々なセラミック材料の特性の多くは、表面・結晶粒界・界面などの格子不整合領域における原子構造・電子状態と密接に 関係している。本研究グループは、このような機能をつかさどる格子不整合領域に着目し、透過型電子顕微鏡を用いたナノ領域 の直接観察・分析技術をもとに、主にセラミックを対象とした新規材料開発や新たな焼結プロセスの開発を行っている。

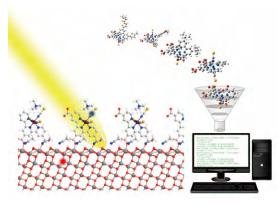
Functional properties of various ceramic materials are often related to the atomic structures and electronic states in the lattice mismatch regions such as the surfaces, grain boundaries, and interfaces. We are attempting to develop new functional ceramic materials including new ceramic processing techniques from the viewpoint of controlling the lattice mismatch region using the nanoscale analysis technique of high-resolution transmission electron microscopy.

山本 剛久 YAMAMOTO, Takahisa

教授《工学研究科》

Professor

ナノ構造制御に基づく新規機能性セラミック材料の


Development of Ceramic Materials by Controlling the Atomic/Electronic Structures at Nano Scale

3mol%Y2O3-ZrO2ceramic by HAFS flashing technique at 1200°C for only 5min.

■ 理論化学/Theoretical Chemistry

化学データベースの良い機械学習法と獲得知識を用いた分子の自動 生成、超並列計算機を用いた科学技術計算のアルゴリズムやプログラム、 分子や固体の新しい量子化学理論の開発。[ニューラルネット、グラフ理 論、graphics processing units、CUDA、密度行列、グリーン関数]

My group is involved in the development of machine learning algorithms for chemical data, the automatic design of molecules using structure-property relationships, parallel algorithms and programs for material simulations on massively parallel computers, and new quantum-chemical theory for molecules and solids (neural networks, graph theory, graphics processing units, CUDA, density matrices, Green's function).

第一原理計算を用いて、色素で増感した半導体表面での光吸 収と電荷分離過程の、構造と機能の相関を解明する。このルー ルを機械学習し、より良い色素分子を発見する。

Ab initio study of the photoabsorption and charge separation process on the dye-sensitized semiconductor surface. A neural net learns the predicted structure-property relations and suggests better dyes.

YASUDA, Koji

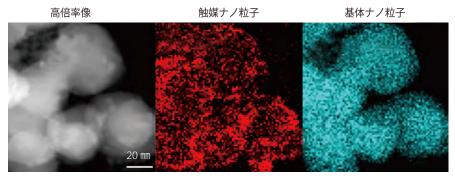
Associate Professor

分子の電子状態理論や化学情報学の手法開発と、そ れを用いた物質の設計 Quantum Chemistry and Chemoinformatics,

Methodology Development and Material

材料設計部

Materials Design Section


生体・環境・エネルギー材料等の微細構造に着目し、2次元、3次元構造やそれらのナノ化といった視点から、従来材料の性 能向上を目指すとともに、新規組成や複合化、精密制御による性能の飛躍的向上のための材料設計の研究を推進します。

This Section promotes researches of material design with a focus on the microstructures of materials used in environments, electronics, mecahnics and energy-related fields. Toward the aim of improving the performance and making major strides in terms of enhancements, the MD performs advanced studies through new compositions, novel composites and nanomaterials from the perspective of two- and three-dimensional and/or nanometer-scaled structures.

■ 環境材料工学/Environmental Materials Engineering

環境材料工学にかかわる新材料を利用した環境保全技術は現代社会で広く利用されるようになっています。エネルギー関連 複合領域の科学研究を推進するとともに、自動車触媒排ガス浄化分野でも利用できる新しいナノ結晶材料(CeO2やZrO2など) の開発や環境デバイス開発に向け、実験とともに計算科学を援用した研究を推進しています。

Material engineering for environmental preservation can contribute to reduce resources and an energy risk as well as to bring environmental depollution. Especially, our research concerns physics and chemistry of nanocrystals such CeO2 and ZrO2 in automotive exhaust treatment and their reaction dynamics simulation. Our unit has been concerned with an iLIM project (MEXT) as a project leader for these years.

ナノ粒子の複合化による高性能な環境保全(排気浄化触媒)技術の開発(電子顕微鏡による元素分布の観察) Nanoparticles-composite material for environmental depollution (automotive catalyst) and its microstructure with Ce and Zr elemental mapping in nanometer scale by electron microscopy

排ガス浄化用ハニカムセラミックスと貴金属と セリアナノ粒子触媒(研究室の開発品)

Honeycomb-type ceramics for engine exhaust treatment and noble metal/CeO2 nanoparticle catalysts (developed by present labs)

小澤 正邦 OZAWA, Masakuni

ナノ結晶の創製とその環境浄化への応用 Nano-Crystals and Their Application to **Environmental Pollution Control**

HIRAIWA, Atsushi

持任教授《東京分室》 Designated Professor (Tokyo Branch)

ワイドバンドギャップ半導体を用いたパワーデバイ スおよび同ゲート絶縁膜の研究 Development of wide bandgap semiconductor power devices and their gate

Assistant Professor

ディーゼル車排ガス浄化システムの研究 A study on exhaust gas purification system for diesel vehicles

HATTORI, Masatomo

Assistant Professor

処理環境浄化性能を有する機能性複合材料の創製

Development of functional composite materials for environmental purification

川原田

KAWARADA, Hiroshi Visitina Professor

客員教授

TAKAHASHI, Seiji Visiting Professor

且井 客員准教授

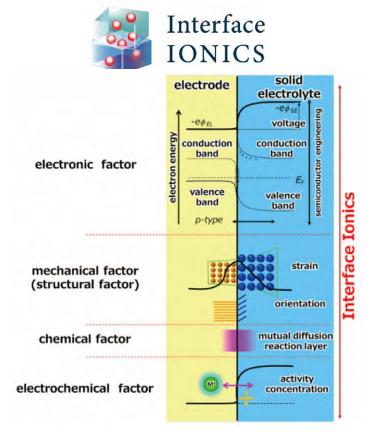
KATSUI, Hirokazu

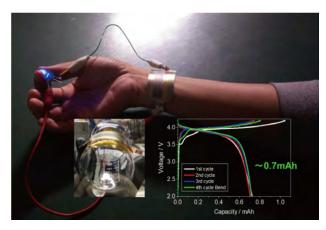
Visiting Associate Professor

幸治 YOKOTA, Koji 横田

招へい教員

客員教授


Visiting Faculty


■ ナノイオニクス設計工学/Nano Ionics Design Engineering

全固体電池は高エネルギー密度を有する次世代二次電池として期待されており、その性能の鍵を握る界面に着目した研究を 行っています。

現在、硫化物型、酸化物型、フッ素シャトル型等の全固体電池の界面に着目した材料・界面設計と制御に関する研究を、 NEDO、JST-ALCA、科研費(新学術:蓄電固体界面科学)等で取り組んでいます。

All-solid-state batteries (SSBs) have been expected as next generation rechargeable batteries with high energy density. Our research Gp. has focused on science on interfacial ion dynamics around the homo/hetero interface. Our recent target is sulfide-based, oxide-based, and fluorine shuttle-type SSBs, which are financially supported by NEDO, JST-ALCA, and Grant-in-Aid for Scientific Research on Innovative Areas "Interface Ionics".

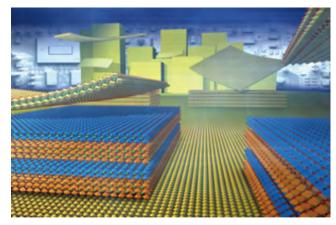
AII-Solid-State Batteries Sulfide-based Oxide-based Fluorine shuttle-type

入山 恭寿 IRIYAMA, Yasutoshi

教授《工学研究科》

Professor

全固体蓄電池などの次世代固体イオニクスデバイス の開発とその界面イオンダイナミクスに関する研究 R&Ds of Advanced Solid State Ionics Devices and Science on Interfacial Ion Dynamics


材料製造プロセスに関する研究を進めるとともに、高性能な断熱・遮熱材料、熱電発電や誘電エラストマーを用いた機械的エネルギー変換デバイスの研究、高効率な水素製造・燃焼・発電プロセス等に関する研究等を推進します。

In addition to research related to material production processes, the Materials Processing Section performs research on mechanical energy conversion devices that make use of high-performance thermal-insulation and -shielding materials, thermoelectric power-generating and dielectric elastomers, and other such materials, as well as research on, for example, high-efficiency hydrogen production, combustion, and power-generation processes.

■ ナノ機能材料 / Functional Nanomaterials

ナノレベルでサイズ、形態、次元を制御したナノ物質は、 従来のバルク材料にはない特異な物性を示し、新しい機 能材料としての応用が期待されています。材料プロセス部 では、無機2次元ナノ物質を対象に、精密合成、高次構造 体の構築、機能開拓などを行い、新しい電子デバイス、エネ ルギー材料の開発を進めています。

Nanomaterials with controlled size, morphology, and dimensions have been emerging as important new materials owing to their unique properties. In particular, two-dimensional (2D) nanosheets, which possess atomic or molecular thickness, have opened up new possibilities in exploring fascinating properties and novel devices. The Materials Processing Section is working on the creation of inorganic 2D nanosheets and the exploration of their novel functionalities in electronic and energy applications.

2 次元ナノシートの精密集積と電子デバイスへの応用 Controlled assembly of 2D nanosheets and its application to electronic devices.

部門長 田 教授

Director of the Division **実 OSADA, Minoru**

Professor

研究課題 Project

2次元ナノ物質を利用した環境調和型電子材料の開発

Development of environmentally friendly electronics using two-dimensional materials

小林亮

KOBAYASHI, Makoto Associate Professor

研究課題

溶液法を基盤とした低次元ナノ材料の創製 Development of low-dimensional nanomaterials employing solution methods

山本 瑛祐 火

YAMAMOTO, Eisuke
Assistant Professor

研究課題

非層状系酸化物ナノシートのボトムアップ合成

Bottom-up preparation of non-layer strucutred metal oxide nanosheet

■ ラジカル化学/Radiation Chemistry & Biology

熊 谷

紑

KUMAGAI, Jun Associate Professor

研究課題

ラジカル検出を通した光・放射線が誘発する化学反応・生物影響の研究

Chemical Reactions and Biological Effects Induced by Photo- and Ionizing Radiation as Studied by Detection of Radicals

原田

勝 戸

HARADA, Katsuyoshi

客員教

Visiting Professor

津田

泰志 TSUDA, Taishi

招へい教員

Visiting Faculty

D S

システム創成部門では、持続発展可能でかつ環境に調和した社会の構築に資する要素技術として、高度なエネルギー変換・輸送・利用技術、微生物による環境浄化・物質生産、様々な視点からエネルギー・環境の影響評価を行う手法の開発などを行います。また、それらを効果的に活用するための無線ネットワーク技術や交通マネジメント技術に関する最先端の研究も推進しています。

The Division of Systems Research (DS) aims to develop key technologies contributing to sustainable and ecological society, such as advanced energy conversion, transmission, and utilization technologies, bioremediation and substance synthesis using microorganisms, energy and environmental impact assessment methods from various points of view. For the effective use of these technologies, the DS also carries out leading-edge researches on wireless communication system and urban traffic management system, etc.

変換システム部

Conversion Systems Section

高効率で先進的なエネルギー変換システムの構築を目指した研究に取り組んでいます。微小な水力エネルギーを利用し た発電・蓄電システムの開発、石炭燃焼技術の改善、廃棄物エネルギーの資源化、感圧・感温塗料を用いた熱流体現象 の計測などを進めています。

This section is engaged in research aimed at the creation of high-efficiency, cutting-edge energy conversion systems. This includes the development of power generation and storage systems that utilize minute amounts of hydroelectric power, the improvement of coal-combustion technologies, the conversion of waste-material energy for use as a resource, and the measurement of thermofluid phenomena using pressure- and temperature-sensitive paint.

■ 環境・エネルギー工学 / Energy and Environmental Engineering

Director

- 郎 NARUSE, Ichiro Professor

地球・地域環境調和型高効率エネルギー変換技術の Development of Highly Efficient Energy

Conversion Technologies for Global and Local Environment

植木 保昭 UEKI, Yasuaki

Associate Professor

高温プロセスの環境調和型持続的省エネルギー技術 の開発

Development of Sustainable Energy-Saving and Low Environmental Impact Technologies for High Temperature Process

- ●木質バイオマスペレットの外観写真 Picture of woody biomass pellet
- 2廃棄物固形燃料の外観写真 Picture of Refuse Derived Fuel (RDF)
- 3気泡流動層装置での流動媒体の流動状態 Fluidization of bed materials in a bubbling fluidized bed system

■ 推進エネルギーシステム工学 / Propulsion and Energy Systems Engineering

デトネーション(極超音速燃焼)の基礎研究,及びその航空宇宙推進機・ガスタービンエンジン等へのシステム応用研究を 行っています. デトネーション現象を利用すると、燃焼器やエンジンシステムの革新的な小型・高性能化が期待できるため、 多様なシステムを根底から変更することになります。

In this laboratory, we are conducting basic research on detonation and its application to aerospace propulsion and gas-turbine engines. By utilizing the detonation phenomenon, innovative downsizing and high performance of combustors and engine systems can be expected. The detonation engine will fundamentally change various systems.

笠原次郎

KASAHARA, Jiro

Professor

高熱効率デトネーションエンジンに関する研究 Study on High-Thermal-Efficiency Detonation

松山

MATSUYAMA, Koichi

特任教授

デトネーションエンジンの宇宙推進システムへの応用

Designated professor

Application of Detonation Engines to Space Propulsion System

川崎

KAWASAKI, Akira Assistant Professor

ション燃焼技術のエネルギー変換機器への Detonation Combustion and its Application to

Energy Conversion Devices

伊東山

ITOYAMA, Noboru

特任助教

Designated Assistant Professor

デトネーション現象の化学工学的理解と工学応用 Study on Detonation Phenomena on the Viewpoint of Chemical Engineering and Its Application

宇宙飛行実験用の回転デトネーションエンジン Rotating detonation engine for space flight experiment

ネットワークシステム部では、様々な電力・熱エネルギー源と需要家をつなぐエネルギーシステムの計画・制御技術、環境 的に持続的な交通システムやその最適マネジメント、それらインフラの実現に不可欠な高度な無線通信システムなどに関する 最先端の研究を推進しています。

The Network Systems Section is pursuing cutting-edge researches, such as planning and control method of energy system connecting various electricity/heat sources and demands, future visions of environmentally sustainable urban transportation system and its optimum management, and wireless communications necessary for realizing such infrastructures.

■ 無線通信システム / Wireless Systems

自然と調和した持続可能な社会を実現するための必須技術である無線通信について、その基礎から応用までの幅広い分 野の研究・開発を行っています。特に、エネルギ・産業システム、交通システム、非常災害時など、多くの場面で必要となる「大 規模システムにおける情報収集制御のための無線通信システム」を重視しています。そこでは,通信部分だけではなくシステム 全体を統合的に理解し最適化することを目指しています。またシステムの実現のためには、電波だけでなく、光無線MIMO通 信、イメージセンサ可視光通信、電力線通信といった多様な通信技術の研究とその成果の活用を行っています。

We investigate and develop a wide variety of wireless communications that are essential for the realization of an environmentally friendly sustainable human society. Our research covers basic theories to real applications, focusing especially on the total optimization of sensing and control in large-scale systems with wireless communications, which is required in energy/industrial systems, ITS (intelligent transportation systems), and disaster support systems. From the viewpoint of communications media, our scope includes not only radio waves but also optical wireless communications, power line communications, and more.

- (A) ドローン無線ネットワーク Wireless drone network
- (B) デジタルサイネージ可視光通信 Digital signage visible light communications
- (C) イメージング MIMO 光無線用受光器 Imaging Optical Device for Wireless Communications

片山 正昭 KATAYAMA, Masaaki Professor

無線通信技術に関する研究とその成果の環境システ

ムへの適用 Wireless Communications and Their Applications for Green Systems

岡 \blacksquare 准教授

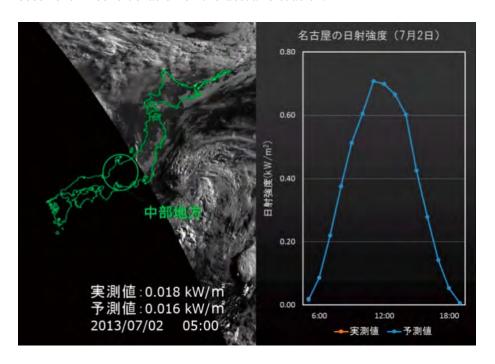
OKADA, Hiraku

スマートコミュニティ実現に向けた無線通信システ ム・無線ネットワーク Wireless Communication Systems and Networks for Smart Community

Associate Professor

ベン ナイラ シャドリア

BEN NAILA, Chedlia Assistant Professor


高信頼・大容量な持続可能アクセスネットワークのた めの無線通信技術 Wireless Communications for Reliable, High Capacity and Sustainable Access Network

27

■ エネルギーシステム / Energy Systems

太陽光発電や風力発電などの再生可能エネルギーが大量導入された将来の電力システムを安定かつ効率的に運用するため、再エネ発電の出力把握・予測技術の高精度化・高信頼化、電力システムの計画・運用技術の高度化に関する研究を行うとともに、これに貢献する電力需要の能動化、分散電源の制御技術の開発に取り組んでいる。また、これらの効果を実態に即して評価するため、将来の電力需要や再エネ出力などの各種時系列データの構築も行っている。

In order to realize the stable and reliable operation of future electric power system with high penetration renewable energy such as photovoltaic power generation and wind power generation, we investigate and develop the following issues: highly accurate and reliable forecasting and nowcasting method of renewable power output, sophisticated planning and operation method of electric power system, control method of demand-side resources and distributed generators to contribute to power system operation. In addition, we develop a time-series data of future electricity demand and renewable power output to be used in a system assessment in consideration of the actual situation.

加藤 丈佳 KATO, Takeyoshi 教授 Professor

エネルギー資源・需要の多様性を考慮した電力シス

エネルギー資源・需要の多様性を考慮した電力システムの計画・制御手法の開発 Development of Planning and Control Method of Electric Power System in Consideration of Diversity of Energy Resources and Demands 武藤 浩隆 📈

MUTO, Hirotaka Visiting Professor

■ 交通システム / Transport System

自動運転車両の普及を念頭に置きつつ、環境的に持続可能な交通システムの実現を目指し、環境負荷とエネルギー消費に対する制約を明示的に考慮した都市交通システムのあるべき将来像の提案、および、人々の交通行動に関するよりよい理解と、それに基づく個々の交通施策の構築とその定量的評価を行っている。研究テーマとしては、電気自動車の利用効率性に関する研究、交通事故削減方策に関する研究、自動運転車による都市内道路交通の最適マネジメントに関する研究、中山間地域でのモビリティ確保に関する研究、などに取り組んでいる。

Towards the realization of an environmentally sustainable transportation system considering the widespread use of autonomous vehicles in the near future, we propose that future visions of urban transport systems should explicitly consider the constraints of environmental impact and energy consumption, and develop and evaluate transportation policy measures based on a rigorous understanding of individuals' travel behaviors. Our research topics include the efficiency of the use of electric vehicles, countermeasures to reduce traffic accidents, optimum management of urban road traffic using autonomous vehicles, and fulfillment of the mobility needs of mountainous rural communities.

タクシー走行軌跡データを用いた都市道路網の交通流マネジメント Traffic management on urban road network utilizing taxi trajectory data

YAMAMOTO, Toshiyuki

環境的に持続可能な都市交通システムのデザイン Design of Environmentally Sustainable Urban Transport System

MIWA, Tomio 准教授 Associate Professor

交通行動における意思決定過程のモデル化および都 市交通システムの評価 Modeling Travel Behavior and Evaluation of Transport Systems

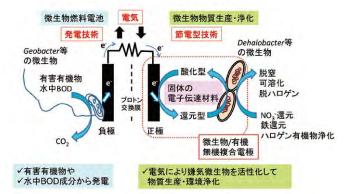
LIU, Shasha Researcher

志 研究機関研究員

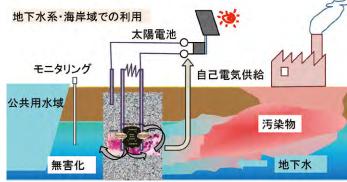
LIU, Zhiguang Researcher

循環システム部

Circulation Systems Section

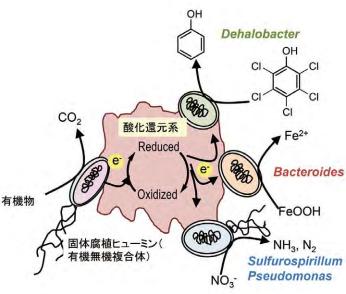

循環システム部では、環境調和型の物質変換・物質循環に関する様々な要素技術開発とともに、それらの技術を社会へ 実装した場合の評価や評価法の開発を行っています。また、そのために必要となる省資源に資する環境負荷低減技術、リサ イクル技術や物質循環再生システムの開発研究も推進しています。

The Circulation Systems Section develops various key technologies related to ecological material conversions and circulation, and also assesses such technologies when they are deployed in society and develops the necessary assessment methods. Furthermore, the section is pursuing research and development on technologies that reduce environmental impact, recycling technologies, circulation systems of renewal materials, and other technologies that contribute to reducing the consumption of resources.


■ 環境エネルギー生物システム/Environmental and Energy Biosystems

環境・エネルギー問題を解決するために様々な技術開発が進む中で、微生物による環境浄化および物質生産は省エネル ギーで且つ原位置に設置可能な技術として期待されている。我々は、土壌や底質中に含まれる固体腐植(ヒューミン)が、多 様な嫌気性微生物に対し細胞外から電子を供給して活性化する「細胞外電子伝達能力」を有することを見いだした。そこで、 この細胞外電子伝達メカニズムを解明するとともに微生物電気化学システムの開発を進めている。これは、自然界で働く生物 エネルギーネットワークを解明するものであると同時に、太陽電池で供給できる小電力を用いた微生物の活性化による環境浄 化や物質生合成の新技術の開発につながるものと期待される。

Among the various technological developments toward solving environmental and energy problems, bioremediation and materials/resources syntheses using microorganisms are expected to be used as energy-saving technologies that can be applied on-site. We have found that solid-phase humus (humin) has an external-electron-mediating function for various anaerobic microorganisms, in which humin supplies the external electrons to the microbial cells directly and activates them. We are studying the mechanism of this external-electron transfer and developing a microbial electrochemical system. It is expected that the study will elucidate the biological energy network working in the natural environment and lead to the development of new technologies for environmental remediation and material biosynthesis by the activation of microorganisms using a small amount of electricity that can be supplied by solar cells.



微生物の細胞外電子伝達システムを用いた省エネ型環境修復・省資源技術

透過性反応浄化壁(細胞外電子伝達物資 + 機能微生物)

電気化学的に活性化した微生物浄化システム

微生物還元反応に電子供与体として働く固体腐植ヒューミン

電気微生物培養系

2槽式培養系を用いて、電気を用いて微生物による汚染物の分解促進あるい は汚染水からの電気の取出し(発電)を行っている。

Electromicrobial culture system

Studies are carried out on the electrochemical enhancement of pollutant degradation by microorganisms or the microbial electric generation from polluted water, using two-chamber bioelectrochemical culturing system.

副部門長

Vice-Director of the Division

新太 KATAYAMA, Arata

教授

Professor

微生物を利用した省エネ型環境修復・資源化技術の

Energy-saving microbial technologies for environmental remediation and resource generation

笠井 拓哉 KASAI, Takuya

Assistant Professor

微生物を用いたエネルギー・資源循環メカニズムに

Circulation Systems Section Environmental and Energy Biosystems

濱村 奈津子

HAMAMURA, Natsuko

Visiting Associate Professor

客員准教授

吉田 奈央子

YOSHIDA, Naoko

Visiting Associate Professor

ファム デュエンミン PHAM, Duyen Minh

研究機関研究員

客員准教授

Researcher

自然共生型社会を目指した再生可能エネルギーと環境エコロジー・システムの評価に関する研究

Study on renewable energy and environment/ecology system assessment for achieving sustainable society in harmony with nature

エネルギー・環境の影響評価を行い、持続可能な社会実現のための研究を行っています。特に、土地利用や自然環境の 空間評価に着目し、再生可能エネルギー(バイオマス、小水力、太陽光等)、生態系サービス、経済社会に関する課題の総合 的な解決に取り組んでいます。現地調査レベルの小さいスケールから国を超えたグローバルなスケールまでの影響評価を行う とともに、GIS(地理情報システム)等の空間分析、AI、ドローン、現地調査等を組み合わせた学際的なアプローチで研究に取 り組んでいます。

We are conducting research to realize a sustainable society by assessing the impact of energy and the environment. Focusing particularly on land use and spatial evaluation of the natural environment, we are working on the comprehensive solution of problems related to renewable energy (biomass, small-scale hydropower, solar power, etc.), ecosystem services, economy, and society. Along with environment assessments ranging from small-scale field surveys to global-scale assessment, we are engaged in research with an interdisciplinary approach combining, for example, spatial analysis such as GIS (Geographical Information System), AI, UAV, and field surveys.

部門長

Director of the Division

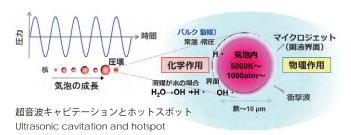
林 ·郎 教授

HAYASHI, Kiichiro

Professor

エネルギーと環境システムの分析と影響評価

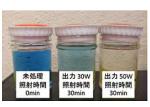
Analysis and assessment of energy and environment system


岡澤

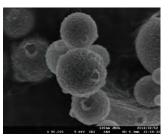
OKAZAWA, Hiromu

客員教授

Visiting Professor


■ エコ・エネルギー工学 / Eco-Energy Engineering

超音波化学反応器 Sonochemical reactor


化学ルミネッセンスによる超音波 化学反応場の可視化 Chemical luminescence in a sonochemical reactor

水溶液中染料の超音波分解 Ultrasonic decomposition of dye in aqueous solution

超音波支援によるマイクロ空間場を利用したエネルギー変換・廃棄物処理に資する材料設計およびプロセス開発に関する研究に取り組んでいます。

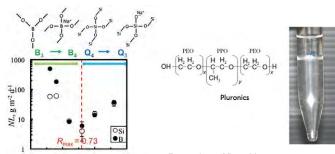
We conduct research on the application of micro space formed by ultrasonication to the material design and development of chemical/physical processes aiding energy conversion and wastetreatment.

金属粒子 Metal particles

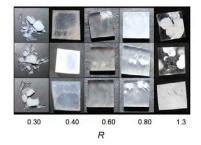
小島 義弘 KOJIMA, Yoshihiro

Associate Professor

研究課題 Project 材料・燃料調製、資源回収、廃水処理のためのソノ支援化学・物理プロセスに関する研究 Sono-Assisted Chemical and Physical Processes for Preparations of Material and Fuel, Resource Recovery and Wastewater Treatment


■ エネルギー資源循環工学 / Energy Resources Recycling Engineering

エネルギー自給率の低い我が国で、人口減少に向かう今後、如何にしてエネルギー消費量を削減しつつ、国民の活発な活動を持続させるのかは、非常に重要かつ難しいテーマです。人々が生活する上で欠かせない物質は、いずれも自然界から採取され、人間界で利用された後、最終的に自然界に戻ります。この物質サイクルのうち、利用後の自然界に戻す部分、すなわち、廃棄物の処理・処分を廃棄物管理と呼び、本研究ではエネルギー削減型の物質サイクルでの廃棄物管理を研究しています。


In Japan, the self-sufficiency of energy supply is quite low, and also, the population is expected to decline. An important and demanding task is deciding how to maintain our activity while reducing energy consumption. All materials necessary for our lives are on a cycle: they are received from the earth, used in human society, and then returned to the earth. We study waste management, treatment, and disposal in an energy-saving material cycle.

Nepheline Crystal Formation in Alumina-rich Borosilicate Glass

Extraction of Re with Aqueous Biphasic Systems (ABS)

Leaching Test of Borosilicate Glass used for Immobilization Matrixes for HLW

澤田 佳代 SAWADA, Kayo

Energy-saving Material Cycle

准教授

Associate Professor

研究課題 Project 省エネルギー型物質サイクルにおける廃棄物管理の 研究 Studies on Waste Management in

エネルギーシステム(中部電力) 寄附研究部門

Energy Systems (Chubu Electric Power) Funded Research Division

本部門では、材料、機器技術からシステム評価にわたる広い視野に立って、持続的発展・低炭素社会に向けた次世代の電力エネルギーシステムの実現を目指し、商用電力系統と再生可能エネルギーの調和的融合、電力機器・システムの高性能化・高効率化、再生可能エネルギーと需要家側資源の高度利用などに関する研究を行っています。

Operating with a broad focus ranging from materials and device technologies to system evaluations, this division strives to propose next-generation electric power energy systems to realize a sustainable and low-carbon society. The division promotes research on the harmonic fusion of renewable energy and commercial electric power systems, electric-power apparatus and systems with high efficiency and advanced functions, and advanced use of renewable energy and demand-side resources.

杉本重幸 SUGIMOTO, Shigeyuki

特任教授

Designated Professor

研究課題

再生可能エネルギーと商用電力系統の調和的融合に 関する研究

Project

श्र ९ ठणार Research on Harmonic Fusion of Renewable Energy and Commercial Electric Power System

IMANAKA, Masaki

特任助教

Designated Associate Professor

再生可能エネルギーと需要家側資源の高度利用 Local Energy Supply Systems with Advanced

栗本宗明

特任准教授

KURIMOTO, Muneaki Designated Associate Professor

江東調理

ナノコンポジット絶縁材料を用いた高効率な電力機 器・システムに関する研究

Nanocomposite Dielectrics for High Efficiency Power Apparatus and Systems

トヨタ先端パワーエレクトロニクス寄附研究部門

Toyota Advanced Power Electronics Funded Research Division

人と地球が共生できる持続可能な社会を目指し、将来モビリティーのパワーエレクトロニクス技術の研究を進めます。ワイド ギャップ半導体の材料、デバイス、システム応用の広い視野から研究を行い、持続可能な社会の実現と、次代を担う人材の育 成に貢献します。

To achieve a sustainable society that ensures a positive symbiotic relationship between humans and Earth, the funded division researches power electronics technologies for future mobility. The division researches and develops material technologies, device technologies, and system applications of wide-bandgap semiconductors with a wide perspective, contributing to the realization of the sustainable society as well as nurturing young researchers for the next generation.

加 地 **徹** KACHI, Tetsu

特任教授

Designated Professor

窒化ガリウムパワーデバイスの作製プロセスおよび デバイス構造の研究

Research of Fabrication Process and Device Structure of GaN Power Devices

只 TADANO, Hiroshi 特任教授 Designated Professor

パワーデバイスの特性を活かした電力変換回路

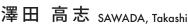
Project

Power conversion circuit using advanced characteristics of devices

MIYAMOTO, Yasuyuki Designated Professor

化合物半導体電子デバイスの開発

Developments of compound semiconductor



マティス マチエ MATYS, Maciej

Designated Assistant Professor

GaNパワーデバイスのシミュレーションと試作評価 Fabrication, characterization and simulation of GaN

宏司 SHIOZAKI, Koji 塩 﨑 <u></u>特任教授 Designated Professor

窒化ガリウムパワーデバイスの研究と応用探索

Project

Research of GaN Power Device and Investigation of Its Application

橋 HASHIZUME, Tamotsu

特任教授

Designated Professor

GaN系材料の異種接合界面制御とパワーデバイス応用

Project

Interface control of GaN-based heterostructures for power device application

森 MORI, Yusuke 特任教授 Designated Professor

研究課題

バルクGaN結晶成長

Project

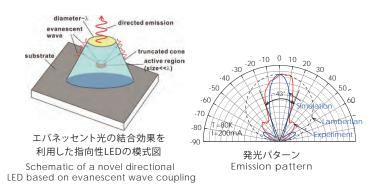
Growth of bulk GaN crystal

招へい教員 Visiting Faculty 山田 YAMADA, Shinji 招へい教員 Visiting Faculty

産総研・名大 窒化物半導体先進デバイスオープンイノベーションラボラトリ AIST-NU Gan Advanced Device Open Innovation Laboratory

窒化物半導体を中心に、材料から応用に至る幅広い研 究を行ないます。

『事業化へ向けた』「橋渡し」研究として、大学等におけ る基礎研究の成果を、効果的・効率的に応用に結びつけ ることを目的としています。

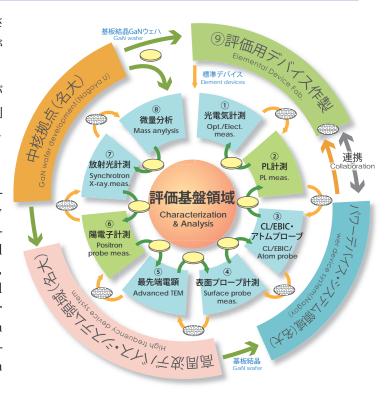

GaN N or AIN buffer lave Sapphire or SiC

AlGaN/GaN HEMT

スィッチング特性 Switching characteristics

Our laboratory covers the research area from materials science to application of nitride semiconductors. To function as a bridge between research and industry, we purposely examine basic research, and expedite connecting research results to practical use.

清水三聡 SHIMIZU, Mitsuaki 特仟教授 Designated Professor GaNパワーエレクトロニクス 研究課題 GaN power electronics Proiect



NIMS・名大 GaN評価基盤研究ラボラトリー天野・小出共同研究ラボー Amano-Koide Collaborative Research Lab

本共同研究ラボは当部門およびNIMSそれぞれに設置さ れ、天野浩教授および小出康夫NIMSセンター長/前理事が 相互にクロスアポイントメントすることにより共同ラボ長を務め、 GaNパワーデバイスの開発に向けた結晶・エピ結晶・要素デバ イスの結晶学的・電気的・光学的な評価・計測や評価・計測 手法の研究開発を推進します。NIMSが保有する物性評価・ 分析技術を有効活用し効果的に研究を推進します。

This collaborative research laboratory was established in Nagoya Univ. and NIMS and is managed by Prof. Hiroshi Amano and Dr. Yasuo Koide, NIMS Director/ former Executive Vice President, as a mutual cross-appointment. It facilitates crystallographic, electrical, and optical property characterization and the development of new measurement techniques for developing GaN-based power devices. The research will be effectively promoted by using advanced measurement and analysis equipment and techniques in NIMS.

小出康夫 特任教授

KOIDE, Yasuo

Designated Professor

窒化ガリウム結晶・ウェハおよび要素デバイスの原子 レベル評価およびマッピング評価計測 Atomistic and Mapping Characterization and

Analysis for GaN Crystal, Wafer, and Devices

田中敦之

TANAKA, Atsushi

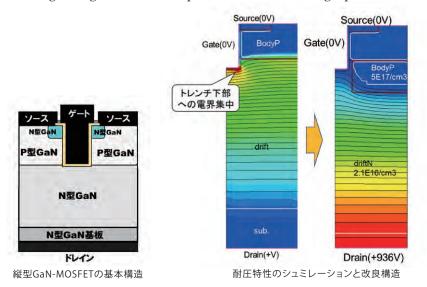
特任准教授

Designated Associate Professo

Project

GaNを用いた次世代パワーデバイスの創始 Initiation of the next-generation power devices using GaN

トヨタ先端パワーエレクトロニクス 産学協同研究部門


Toyota Advanced Power Electronics Industry-Academia Collaborative Chair

窒化ガリウムパワー半導体デバイスの実現に向けて、この部門は以下の新しい技術を研究開発しています。

- 1.高精度で欠陥、不純物および損傷の制御性を可能にする加工技術
- 2.低損失・高スイッチングデバイスのためのデバイス設計技術
- 3. 高性能の新しい窒化ガリウムパワーデバイスを使用したシステムアプリケーション

Toward the realization of gallium nitride power semiconductor devices, this division researches and develops following new techniques:

- 1. Processing techniques that will enable the controllability of defects, impurities and damages with high accuracy
- 2. Device design technology for low-loss and high-switching devices
- 3. System applications using new gallium nitride power devices with high-performance

縦型GaN-MOSFETの構造設計 Design of vertical GaN-MOSFET structure

上杉

UESUGI, Tsutomu Designated Professor

窒化ガリウムパワーデバイスの作製プロセスおよび

デバイス構造の研究 Research of Fabrication Process and Device Structure of GaN Power Devices

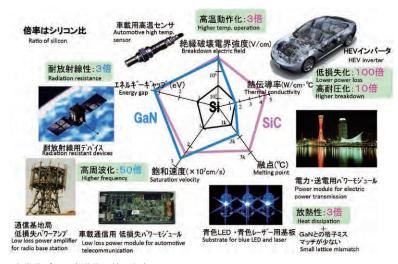
浩 AMANO, Hiroshi

教授《兼任》

KONDO, Takeshi

特任講師

Designated Lecturer


窒化ガリウムパワーデバイスの作製プロセスおよび デバイス構造の研究 Research of Fabrication Process and Device

デンソー自動車用パワーエレクトロニクス産学協同研究部門

DENSO Automotive Power Electronics Industry-Academia Collaborative Chair

デンソー自動車用パワーエレクトロニクス産学協 同研究部門では、将来のハイブリッド自動車、電気 自動車、燃料電池自動車の電動化システムの大電 力化・高周波化・高効率化を見据え、次世代パ ワー半導体の材料研究、デバイス研究、および応用 システムの探索研究を推進します。

DENSO Automotive Power Electronics Industry-Academia Collaborative Chair is looking into the future of high-power, high-frequency, and high-efficiency electric drive systems for HVs, EVs, and FCVs, and promoting exploratory research into next-generation power semiconductor materials, devices, and application systems.

次世代パワー半導体の特長と応用 Characteristics and applications of next-generation power semiconductor

恩田正一

ONDA, Shoichi

特任教授

Designated Professor

Project

次世代パワー半導体材料の結晶成長および高品位化

Development of Crystal growth of the next-generation power-semiconductor materials

小島 特任准教授

Project

KOJIMA, Jun

Designated Associate Professor

次世代パワー半導体材料の高品位化技術と低コスト

化技術の研究

Research of quality improvements and cost-reduced technologies of the next-generation power semiconductor crystals

豊田合成GaN先端デバイス応用産学協同研究部門

TOYODA-GOSEI Gan Leading Innovative R&D Industry-Academia Collaborative Chair

豊田合成は、1986年に赤崎 (現)特別教授、天野(現)特別教 授、豊田中央研究所との共同研 究の機会に恵まれ、GaN材料に 関わる基礎研究をスタートしました。 その研究成果をもとにLED事業を 立ち上げ、LEDの普及に邁進して まいりました。研究から事業化およ び拡大・継続を経験する中で培っ たコアコンピタンスを活用し、新たな 事業の創出を目指します。

In 1986, Toyoda Gosei Co., Ltd., started a joint research project with Professor Akasaki, Professor Amano, and Toyota Central R&D Labs., Inc., and began fundamental research on GaN materials. The commercialization of LEDs and their subsequent widespread adoption were based on this research. The core competencies cultivated from research, commercialization, expansion, and continuation will be utilized to create new business opportunities.

牛田泰久

USHIDA, Yasuhisa

特任准教授

Designated Associate Professor

Proiect

GaNの応用研究

Research of GaN to new product development

健吾

SUMIYA, Kengo

特任助教

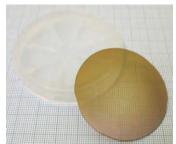
Designated Assistant Professor

研究課題

ワイヤレス給電システム

Project

Development of wireless power transmission


FUKUSHIMA, Hideoki

客員教授 Visiting Professor

旭化成次世代デバイス産学協同研究部門

AsahiKASEI Innovative Devices Industry-Academia Collaborative Chair

旭化成次世代デバイス 産学協同研究部門では、 単結晶窒化アルミニム基 板の特徴を生かした新規 デバイスの探索研究およ び応用技術の開発を推 進し、新規事業の創出を 目指します。

2インチ単結晶AIN基板 2-inch, single-crystal AIN substrate

AsahiKASEI Innovative Devices IA Collaborative Chair exploit our high-quality AlN single-crystal substrate technology, exploratory research into novel devices, and applications to create new business opportunities.

ショワルター レオ ジョン SCHOWALTER, Leo John

Designated Professor

単結晶窒化アルミニウムを用いた次世代デバイスの 研究開発

Research and development of application and Project innovative devices of single crystal aluminum

直治 SUGIYAMA, Naoharu 杉山

特任講師 Designated Lecturer 紫外発光素子のための窒化物半導体材料および薄膜

Research of nitride semiconductor and thin film

Project crystal for UV-light emitting devices

張 特任助教

ソース雷極

ZHANG, Ziyi

Designated Assistant Professor

窒化物半導体による紫外発光素子に関する研究開発 Research and development of UV-light emitting devices of nitride semiconductor

豊田中研GaNパワーデバイス産学協同研究部門

TOYOTA CENTRAL R&D LABS GaN Power Device Industry-Academia Collaborative Chair

窒化ガリウムを用いたパワーデバイスの実用化を目指し、下記の観点から 研究を進めます。

- ①不純物や点欠陥を高精度に制御するエピタキシャル成長技術
- ②ゲート絶縁膜・MOS界面技術
- ③低ダメージ加工、イオン注入などプロセス技術
- ④超低損失化を実現するデバイス設計技術

In order to realize GaN power devices, we research the following:

- ① epitaxial growth with precise control of impurities and point defects
- 2 gate insulators and MOS interfaces
- 3 process technologies, such as low-damage etching and ion implantation
- 4 device design for very low loss

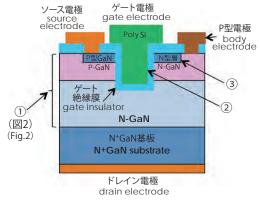


図1. 縦型トレンチGaNデバイス Fig.1 A Vertical trench GaN device

10 4910 cm2/Vs Hall mobillity (cm//Vs) 103 MOVPE世界最高個 The highest value by MOVPE 10² L 30 100 300 500 Temperature (K) *最新のエピでは1239 cm²/Vs@300Kに到達 *1239 c m²/Vs@300K was acquired recently

図2. N型低濃度エピのホール移動度 Fig.2 Hall mobility in our n-type low-doping epi-layer

- 義 TOMITA, Kazuyoshi

Designated Professor

GaNパワーデバイス用の高品質エピタキシャル成長

High-quality epitaxial growth for GaN power

兼近 将: 特任教授

KANECHIKA, Masakazu Designated Professor

GaNパワーデバイスのプロセス技術およびデバイス Process technology and device design and

evaluation for GaN power devices

三菱ケミカルGaN基板デバイス産学協同研究部門

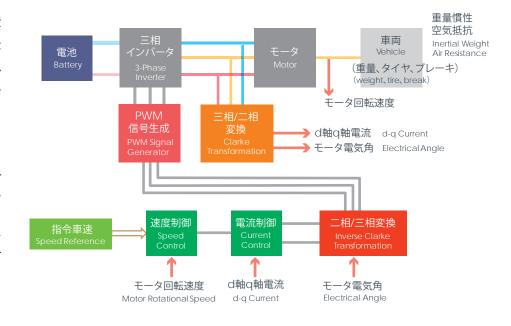
MITSUBISHI CHEMICAL Gan Substrate Devices Industry-Academia Collaborative Chair

三菱ケミカルGaN基板デバイス産学協同研究部門では、窒化ガリウム(GaN)の優れた物性を活用した新規デバイス構造の土台となる高品位GaN基板について、以下の内容で研究開発に取り組みます。

- ・基板品質(結晶欠陥、不純物等)とデバイス特性との相関調査及びメカニズム究明
- ・新規デバイス用GaN基板に求められる品質及び特性の明確化

MITSUBISHI CHEMICAL GaN Substrate Devices Industry-Academia Collaborative Chair is engaged in the research and development of high-quality gallium nitride (GaN) substrates that serve as the foundation of new device structures exploiting the excellent properties of GaN, focusing on the following themes.

- ·Investigation of the correlation between substrate quality (e.g., crystal defects, impurities) and device characteristics, as well as elucidation of the mechanism underlying the correlation
- ·Clarification of the quality and characteristics required for GaN substrates for new devices



ローム複合系シミュレーション産学協同研究部門

Rohm Multi-Scale Power System Simulation Industry-Academia Collaborative Chair

ローム複合系シミュレーション産 学協同研究部門では、システムに最 適なデバイス設計・開発を試作レス で達成するための統合シミュレーショ ン技術の実現を目指します。

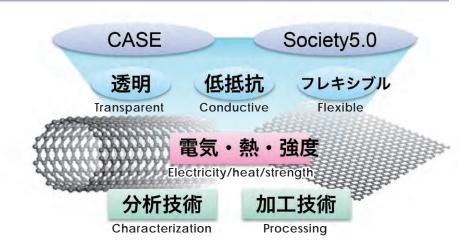
Rohm Multi-Scale Power System Simulation Industry-Academia Collaborative Chair is realizing system-optimized device design with integrated simulation technology and without any prototypes.

■ EVパワートレインシミュレーション向けデバイスモデ

が発送 ル開発 Development of device model for EV powertrain

山口 敦司 YAMAGUCHI, Atsushi Pesignated Lecturer

研究課題 EVパワートレインシミュレーション向けデバイスモデル開発 Development of device model for EV powertrain


デンソー革新的ナノカーボン応用産学協同研究部門

DENSO Nano-carbon Research & Innovation Industry-Academia Collaborative Chair

カーボンナノチューブに代表されるナノ カーボンのユニークな特性を活かしたデバイスの実用化を目指し、特性の引き出しに必要な基盤技術および要素技術の構築に取り組みます。

Toward the realization of novel nanocarbon devices, the basic and elemental technologies for fully use of the unique features of nano-carbons will be developed.

Project

大島 久純 OSHIMA, Hisayoshi 特任教授 Oshima, Designated Professor

研究課題 ナノカーボン加工及びデバイスの研究開発

Project Research and development of nano-carbon processes and devices

岩瀬 勝則 IWASE, Katsunori 特任准教授 Designated Associate Professor 研究課題 ナノカーボンデバイスのシステム適用 Project Research and development of system application using nano-carbon devices

エネルギー変換エレクトロニクス実験施設

Center for Integrated Research of Future Electronics, Transformative Electronics Facilities

エネルギー変換エレクトロニクス実験施設は、名古屋大学未来材料・システム研究所のクリーンルーム実験棟です。本施設は、 GaN研究における結晶成長・デバイスプロセス・評価を同一スペースで行える約1,000㎡(クラス1,000:露光エリア、クラス10,000:

プロセスエリア)の大空間クリーンルームを有 し、研究開発の加速を図ります。

The Center for Integrated Research of Future Electronics - Transformative Electronics Facilities (C-TEFs) is an experimental facility of IMaSS at Nagoya University. It has a large clean room of about 1,000 m² (Class 1,000 exposure area; Class 10,000 process area) for conducting accelerated crystal growth, device processes, and evaluation in GaN research and development.

オリジナル web ページ http://www.c-tefs.imass.nagoya-u.ac.jp/

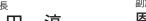
■ 特長

- (1) GaNに特化したサブミクロン加工プロセスライン
 - ▶ 結晶成長から電極形成までアンダーワンルーフで GaNパワーデバイスをスループロセス
 - ▶i線ステッパをはじめとした、サブミクロンに対応した 充実した加工設備
 - ▶専任の技術員による運営管理、プロセス受託
 - ▶ 多様な料金設定による設備共用システム
- (2) ターゲットデバイス
 - ▶GaN on GaN 縦型パワーデバイス
 - ▶GaN 系光デバイス
 - ▶ AlGaN/GaN 横型HEMT デバイス
 - ▶ 窒化物半導体未来デバイス

Features

- (1) Submicron processing line specialized for GaN Electronics
 - Complete end-to-end process of GaN power devices from crystal growth to device fabrication
 - Equipment capable of submicron feature fabrication, including an i-line stepper
 - Departion management and contract fabrication services by technical development staff
 - Shared user facility system with fee structure to allow use by outside organizations
- (2) Target devices
 - GaN-on-GaN vertical power devices
 - GaN-based optical devices
 - AlGaN/GaN lateral HEMT devices
 - Nitride semiconductor future devices

施設長


須 田 教授≪工学研究科≫

西井 勝則

NISHII, Katsunori

Technical Staff Manager

Director SUDA, Jun Professor

副施設長

管理室長

Vice-Director

恩田 正· ONDA, Shoichi 特任教授≪兼任≫ Designated Professor

Facility Control Manager

笹岡 千秋 SASAOKA, Chiaki

特任教授≪兼任≫

Designated Professor

YOKOYAMA, Takahiro Deputy Technical Staff Manager

丹羽 弘樹

NIWA, Hiroki Technical Staff

副施設長

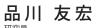
加地

特任教授≪兼任≫

飯島彬文

Vice-Director

KACHI, Tetsu


Designated Professor

IIJIMA, Akifumi

山本 浩樹

YAMAMOTO, Hiroki

High Voltage Electron Microscope Laboratory

名古屋大学では、1965年に我が国で初めて50万ボルトの電子顕微鏡が設置されて以降、世界を先導する超高圧電子顕微鏡開発研究の隆盛を見るに至りました。特に2010年に設置された、新しい「反応科学超高圧走査透過電子顕微鏡」は、ガス中での各種の反応や現象を観察することが出来るため、環境・エネルギー関連材料の開発研究に適し、グリーンイノベーションに大いに貢献することのできる装置です。本施設は現在、その他の最先端電子顕微鏡群を有する共同利用研究施設として、本学の研究者はもとより共同研究を通して全国の大学、研究所、産業界の研究者にも共用されています。今後国際的な電子顕微鏡の研究センターとして、さらに機能の充実を図っていきます。

Since the installation of a 500 kV electron microscope in 1965, Nagoya University has seen prolific, world-leading research in the field of high-voltage electron microscopes in Japan. In particular, the 1000 kV Reaction Science High Voltage Scanning Transmission Electron Microscope installed in 2010 enables reac-

tions and phenomena occurring in gas environments to be observed, aiding in the research and development of environmental and energy-related materials. This microscope can significantly contribute to the field of green-innovation research. The laboratory is operated as an open research facility for all researchers in Nagoya University. Moving forward, as part of our efforts to become an international center of electron microscopy, joint projects with other universities, research institutes, and industries are encouraged.

施設長 武藤俊介 _{教授《兼任》}

Director MUTO, Shunsuke Professor

反応科学超高圧走査透過電子顕微鏡 JEM1000K RS Reaction science high voltage scanning transmission electron microscope (JEM 1000K RS)

臼倉 治郎

USUKURA, Jiro Designated Professor

五十嵐 信行 IKARASHI, Nobuyuki 教授《兼任》 Professor

桒原 真人 KUWAHARA, Makoto ^{准教授(兼任)} Associate Professor

樋口 公孝 HIGUCHI, Kimitaka Engineer

荒井 重勇

ARAI, Shigeo
Designated Associate Professor

副施設長 **齋 藤** 教授《兼任》

Vice-Director 晃 SAITOH, Koh

Professor

長尾 全寛 NAGAO, Masahiro ^{推教授(兼任)} Associate Professor

山本 悠太 YAMAMOTO, Yuta

臼倉 英治

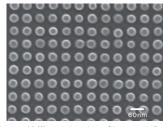
USUKURA, Eiji Researcher

山本 剛久 YAMAMOTO, Takahisa _{教授《兼任》} Professor

大塚 真弘 OHTSUKA, Masahiro 講師《兼任》 Lecturer 先端技術共同研究施設のクリーンルーム等には、分子線エピタキシー、CVD、スパッタリング等の成膜装置、マスクアライナ、電子線描画装置、ICPエッチング装置等の微細加工装置、SEM、ESCA、原子間力顕微鏡、薄膜X線回折等の分析装置など多くの先端的な機器が設置されており、各種材料の薄膜形成から、マイクロ/ナノ加工、さらに表面分析まで幅広い研究に活用されております。また、文部科学省の微細加工ナノプラットフォーム事業によるナノ材料・ナノ加工に関する技術支援を推進しており、学内外の多くの研究者に利用されています。

デバイスプロセス室(クリーンルーム)
Device process room(Clean room)

The clean rooms and other laboratories of the Research Facility for Advanced Science and Technology are equipped with molecular beam epitaxy, chemical vapor deposition (CVD), a sputtering system, and other film deposition equipment; a mask aligner, electron-beam lithography, inductive coupled plasma (ICP) etching, and other micro-fabrication equipment; scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), an atomic force microscope, an X-ray diffractometer, and other analytical equipment, as well as a wide range of other leading-edge equipment used in a wide array of research operations ranging from thin-film deposition of various materials to micro- and nanofabrication and material characterization. Furthermore, this facility is being used to carry out the Nanofabrication Platform Consortium Project supported by the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), providing technical support on nanomaterial processing and nanofabrication for numerous researchers by utilizing multiuser instruments.


スパッタ/MBE/ ECRエッチング真空一貫システム Sputtering/MBE/ ECR etching system

微細加工室(クリーンルーム) Micro fabrication room (Clean room)

電子線露光装置 Electron beam lithography

電子線描画によるナノパターン形成 Nano-pattern by EB lithography

教授《兼任》

施設長 加藤剛志 教授《兼任》

Director KATO, Takeshi

Professor

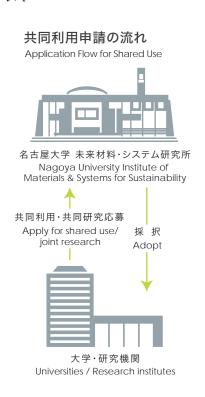
松永 正広

MATSUNAGA, Masahiro Assistant Professor

中 塚 _{教授《兼任》}

NAKATSUKA, Osamu Professor 大島大輝

OSHIMA, Daiki
Designated Assistant Professor


共同利用·共同研究拠点 Joint Usage/Research Center

当研究所は、文科省から「革新的省エネルギーのための材料とシステム研究拠点」として認定され、エネルギーの創出・変換、蓄積、伝送、利用の高度化と超効率化を目指した省エネルギー技術に関する共同利用・共同研究を基礎研究から社会実装のためのシステム化まで幅広く推進しています。国内外の大学や研究機関の研究者は、本研究所の教員と共同研究を行うことで、様々な材料開発を行うための成膜装置、微細加工装置、電子顕微鏡をはじめとする多様な分析装置を共同利用することができます。共同利用・共同研究をご希望の方は、本研究所の教員と事前に打合せの上、ご応募ください。

https://www.imass.nagoya-u.ac.jp/joint/base/about

共用装置のリストや申込み方法などの詳細は、下記URLをご覧ください。

IMaSS has been designated by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) as a "Joint Usage/Research Center of materials and systems for innovative energy management." Through joint usage and research related to energy management technologies, it serves as a venue for everything from fundamental research through to system-building for actual deployment in society, aimed at more advanced, fully optimized energy creation, conversion, storage, transmission and utilization. At this facility, researchers from universities, research institutions and other organizations based in Japan and abroad can engage in joint research together with IMaSS personnel while utilizing a wide range of equipment including film-deposition systems, micro/nano-fabrication equipments, electron microscopes and many other types of analysis instruments, and more. If you wish to apply for joint usage or research at this facility, please consult with the IMaSS staff in advance and apply.

共同利用のイメージ

Image of Shared Use

革新的省エネルギー(エネルギーの創出・変換、蓄積、伝送、消費の高度化・超効率化)の実現 Realize revolutionary energy-saving (further advancement/hyper-efficiency of creation, conversion, reserve,

transmission and consumption of energy)

本研究所の施設、設備、データ等を利用した共同研究

先端的な材料・デバイス等の要素技術に関する基礎研究から社会実装のためのシステム技術

Joint research by utilizing the facilities, equipments, data and so on of the IMaSS. Wide range of research from fundamental research on advanced materials and devices to system engineering for socially implementing them.

本研究所の教員及び本学以外の機関に所属する教員又は研究者を含む研究チーム

Academics or research teams of the IMaSS including researchers from other institutes / universities.

名大の研究者

Nagoya University researchers

名大以外の研究者 (研究代表者)

Researchers from other universities (research representatives)

IMaSSの技師

松浪有高

MATSUNAMI, Aritaka Senior Engineer

樋口 公孝

HIGUCHI, Kimitaka

山本悠太

YAMAMOTO, Yuta Engineer

主な設備一覧 Device Innovation Section

CIRFE エネルギー変換 エレクトロニクス 実験施設

CIRFE-Transformative Electronics Facilities

イオン注入装置 ULVAC IMX-3500 Ion implanter ULVAC IMX-3500

高温スパッタ成膜装置 ULVAC QAM4 High Temperature Sputtering Deposition Equipment ULVAC QAM4

FIB-SEM HITACHI NX 2000 FIB-SEM HITACHI NX 2000

インレンズSEM HITACHI SU9000 In-lens SEM HITACHI SU9000

イメージングCL HORIBA WD201N Imaging CL HORIBA WD201N

仕事関数測定装置 RIKEN KENKI AC-3 Work function measuring device RIKEN KENKI AC-3

エミッション顕微鏡 HAMAMATSU PHOTONICS PHEMOS-1000 Emission microscope HAMAMATSU PHOTONICS PHEMOS-1000

i 線ステッパ Nikon NSR-2205i12D i-line stepper Nikon NSR-2205i12D

ナノインプリント サイヴァクス X500 Nano inprint equipment SCIVAX X-500

レーザー顕微鏡 オリンパス OLS-4100 Laser Confocal Microscope Olympus OLS-4100

RCA洗浄装置 ダルトン 18-MR12 RCA cleaning system Dalton 18-MR 12

有機洗浄装置 ダルトン 18-MU11 Organic cleaning system Dalton 18-MU11

接触式表面形状システム Bruker Dektak XT-A Stylus profiler Bruker Dektak XT-A

ICPドライエッチャ4 ULVAC CE-S ICP etching system 4 ULVAC CE-S

ALD(プラズマ式/サーマル式) Ultratech/CambridgeNanoTech Fiji G2 Atomic layer dposition system (Plasma/Thermal) Ultratech/CambridgeNanoTech Fiji G2

https://www.imass.nagoya-u.ac.jp/joint/equipment.html

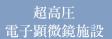
LP-CVD samco LPD-1200 Low pressure CVD system samco LPD-1200

ICPドライエッチャ1 samco RIE-200iP ICP etching system 1 samco RIE-200iP

ICPドライエッチャ2 samco RIE-200iP ICP etching system 2 samco RIE-200iP

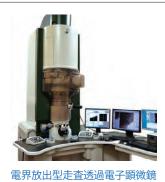
P-CVD1 samco PD-220NL Plasma CVD 1 samco PD-220NL

ICPドライエッチャ3 ULVAC NE-550EX ICP etching system 3 ULVAC NE-550EX


EB蒸着装置 ULVAC ei-5 EB evaporator ULVAC ei-5

スパッタ装置 ULVAC CS-L Sputtering system ULVAC CS-L

光干渉膜厚計(自動マッピング式) FILMETRICS F50 Automated Thickness Mapping Systems FILMETRICS F50


High Voltage Electron Microscope Laboratory

反応科学超高圧走查透過電子顕 微鏡 JEM 1000K RS Reaction science high voltage scanning TEM JEM1000K RS

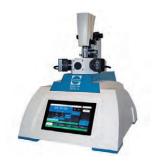
高分解能電子状態計測走查透過型電子顕微鏡 JEM-ARM200F (Cold)(収差補正電子顕微鏡) Aberration corrected scanning TEM JEM ARM200F

JEM-10000BU (収差補正電子顕微鏡) Aberration corrected scanning

Aberration corrected scanning TEM JEM-10000BU

電界放出型透過電子顕微鏡 Transmission electron microscope JEM2100F-HK

電子分光走査透過電子顕微鏡 JEM2100M Electron Spectroscopic scanning TEM JEM2100M



高速加工観察分析装置 MI-4000L (FIB-SEM) High-speed sample fabrication/analysis system MI-4000L

集束イオンビーム加工機 FB-2100 (FIB) Focused ion beam sample preparation system FB-2100

主な設備一覧 Device Innovation Section

アルゴンイオン研磨装置 PIPS II Precision ion beam milling system PIPS II

クロスセクションポリッシャー Cross section polisher IB-09020CP

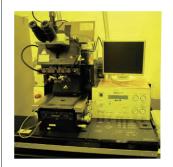
透過電子顕微鏡 JEM-2100plus Transmission Electron Microscope JEM-2100plus

バイオ/無機材料用高FIB-SEMシステム ETHOS NX5000 High-speed sample fabrication/analysis system ETHOS NX5000

先端技術 共同研究施設

Research Facility for Advanced Science and Technology

8元MBE装置 MBE with 8 sources


8元マグネトロンスパッタ装置 Magnetron sputtering with 8 sources

3元マグネトロンスパッタ装置 Magnetron sputtering with 3

電子線露光装置 Electron beam lithography

マスクアライナ MA-6 Mask aligner MA-6

ICPエッチング装置 ICP etching

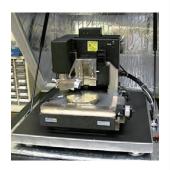
ECR-SIMSエッチング装置 ECR etching with SIMS

イオン注入装置 Ion implantation

フェムト秒レーザー 加工分析システム Femto-second laser for micro-fabrication and measurement

電気炉 Electric furnace

急速加熱処理装置 Rapid thermal annealing


https://www.imass.nagoya-u.ac.jp/joint/equipment.html

走査型電子顕微鏡 FE-SEM

薄膜X線回折装置 X-ray diffractometer

原子間力顕微鏡 Atomic force microscope

X線光電子分光装置 X-ray photoelectron spectrometer

共通機器室

Shared Equipment Laboratory

X線光電子分光装置 ESCA-3300 X-ray photoelectron spectrometer ESCA-3300

高周波誘導結合プラズマ発光分 光分析装置 SPS7800 Inductively coupled plasma atomic emission spectrometer SPS7800

電界放射型分析走查電子顕微鏡 JSM-6330F Field-emission scanning electron microscope JSM-6330F

X線回折装置 RINT2500TTR X-ray diffractometer RINT2500TTR

CHNコーダー MT-6 CHN corder MT-6

液体クロマトグラフ質量分析計 3200 QTRAP Liquid chromatograph-Mass spectrometry 3200 QTRAP

ガスクロマトグラフ質量分析計 QP2010 Ultra Gas chromatograph-Mass spectrometry QP2010 Ultra

透過電子顕微鏡システム JEM-2010F Transmission electron microscope JEM-2010F

1成分レーザドップラー 流速計測装置 FSA 3500P Laser doppler velocimeter for one velocity component FSA 3500P

エネルギー分散型X線分析装置 付走査型電子顕微鏡 S3000N Scanning electron microscope with energy dispersive x-ray

spectroscopy S3000N

X線光電子分光装置 ESCALAB250Xi X-ray photoelectron spectrometer ESCALAB250Xi

学際・国際的高度人材育成ライフイノベーションマテリアル創製共同研究プロジェクト

Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development

http://www.6univslim.imass.nagoya-u.ac.jp/

6大学6研究所(名古屋大学未来材料・システム研究所、大阪大学接合科学研究所、東北大学金属材料研究所、東京工業大学フロンティア材料研究所、早稲田大学ナノ・ライフ創新研究機構及び東京医科歯科大学生体材料工学研究所)が協力し、人々の生活を支える「生活革新材料(ライフイノベーションマテリアル)」を創製し、新しい社会基盤となる異分野横断的新学術分野を構築します。

具体的には、生活革新材料の基盤技術となる要素材料及び技術を開発する分野、環境保全と持続可能社会のための材料を開発する分野、生体応用と医療福祉に貢献する材料を開発する分野において研究および開発を行います。さらに、材料研究を共通基盤とした国際交流・大学・企業連携を推進し、高度人材育成の拠点形成を図ります。

本連携研究プロジェクトは、我が国の材料関連研究と産業支援の牽引役となるのみならず、若手研究者の交流を促進して高度な人材の育成の連携拠点ともなります。

Six university research institutes (Nagoya University Institute of Materials and Systems for Sustainability, Osaka University Joining and Welding Research Institute, Tohoku University Institute for Materials Research, Tokyo Institute of Technology Laboratory for Materials and Structures, Waseda University Research Organization for Nano & Life Innovation, Tokyo Medical and Dental University Institute of Biomaterials and Bioengineering) are collaborating to create "life innovation materials"—materials that support people's lifestyles in innovative ways—and cultivate a new academic field incorporating various other fields while serving as a new societal foundation.

More specifically, this involves the pursuit of research and development activities in various related fields, including the development of component materials and technologies that serve as the technological foundations for life innovation materials, the development of materials that contribute toward environmental preservation and the realization of a sustainable society, fields that contribute toward biomedical applications and medical/welfare materials, and others. We are also striving to make this project a shared platform for international exchange and collaboration between universities and corporations in the field of materials research, thus achieving a venue for the cultivation of highly skilled personnel.

In addition to playing a leading role in the areas of material-related research and industrial support measures, this joint research project is being carried out with the goal of promoting exchanges between young researchers and establishing a shared stage for the fostering of advanced human resources.

-般社団法人GaNコンソーシアム

http://www.gan-conso.jp/

一般社団法人GaNコンソーシアムは、Society 5.0 実現のために、GaN (窒化ガリウム)研究開発活動の加速、効率化、技術開 発の達成を責任持って着実かつ強力に遂行することを通じて、社会の発展に寄与することを目的に、令和元年10月1日付けで設 立されました。

産学官の各会員機関が組織の壁を越え共創するオープンイノベーションの場を構築し、我が国の持続的発展と各機関の成長に 貢献すること、共創場での実践的教育を通して、高い専門性と俯瞰的な視点を兼備し、社会のための科学を志向する、21世紀型 の若手研究者・技術者の育成に努めることを理念としています。

主な参加機関は、大学21機関(東海国立大学機構、トヨタ学園、名工大、名城大など)、国立研究開発法人2機関(産総研、物 材機構)、企業45機関(住友電気工業(株)、大陽日酸(株)、トヨタ自動車(株)、三菱電機(株)など)で(令和2年6月現在)、基礎 から応用まで、材料からアプリケーションまでをカバーする体制を構築しています。

The Consortium for GaN Research and Applications was established on October 1, 2019. The consortium aims to develop world-leading innovations in energy saving and reduction of CO2 emissions by fully utilizing excellent potential of gallium nitride (GaN).

This consortium offers a place for open innovation to achieve seamless collaboration among the consortium members of government, industry and academia, and it will contribute to the sustainable development of our country and the rest of the world as well as the growth of each member organization. The consortium, by using practical sharing-education, also aims to foster promising young researchers and engineers to become able to combine a high level of professionalism with a bird's-eye perspective while aspiring to use science for the society.

As of June 2020, major participants in this consortium include: twenty-one (21) universities (Tokai National Higher Education and Research System, Toyota Technological Institute, Nagoya Institute of Technology, Meijo University, etc.), two (2) incorporated national research institutes (The National Institute of Advanced Industrial Science and Technology, The National Institute for Materials Science), and fourty-five (45) corporations (Sumitomo Electric Industries, Ltd., Taiyo Nippon Sanso Corporation, Toyota Motor Corporation, Mitsubishi Electric Corporation, etc.). The Consortium has built a framework that covers broad technical areas from basic to applied research and from materials development to applications.

© 一般社団法人GaNコンソーシアム © Consortium for GaN Research and Applications

Ⅲ IMaSS DATA

教員数 Number of Members		令和2年4月1日現在	As of April 1, 2020
部門等名 Divisions	教授 Professors	准教授/講師 Associate Professors / Lecturers	助教 Assistant Professors
未来エレクトロニクス集積研究センター Center for Integrated Research of Future Electronics (CIRFE)	6 (24)	5 (10)	3(2)
高度計測技術実践センター Advanced Measurement Technology Center (AMTC)	5 (9)	4 (4)	2(2)
材料創製部門 Division of Materials Research (DM)	4 (4)	3(3)	4
システム創成部門 Division of Systems Research (DS)	7 (3)	5(2)	3(1)
寄附研究部門 Funded Research Division	0(7)	0(1)	0(2)
産学協同研究部門 Industry-Academia Collaborative Chair	0(11)	0(9)	0(2)
超高圧電子顕微鏡施設 High Voltage Electron Microscope Laboratory	0	0(1)	0
先端技術共同研究施設 Research Facility for Advanced Science and Technology	0	0	1
計 Total	22 (58)	17 (30)	13 (9)

兼務教員を除く。括弧内は特任、客員教員を示し、外数。

Excludes staff members who have other concurrent positions. Numbers in parentheses indicate those of designated faculty and visiting staff members.

連携協定拠点 Research Collaboration		令和2年4月1日現在	As of April 1, 2020
国外 International Collaboration			
機 関名	国名		協定年月日
Institutes	Countries		Agreement Dates
中国科学院過程工程研究所	中国		2005年2月21日
Institute of Process Engineering, Chinese Academy of Sciences	China		February 21, 2005
慶南大学校産学協力団	韓国		2005年6月13日
Industry Academic Cooperation Foundation of Kyungnam University	Republic of Korea		June 13, 2005
メリーランド大学・工学部機械工学科	米国		2005年8月8日
Department of Mechanical Engineering, University of Maryland	USA		August 8, 2005
ワシントン大学・遺伝子工学材料科学工学センター	米国		2005年12月20日
Genetically Engineered Materials Sciences and Engineering Center, University of Washington	USA		December 20, 2005
インドネシア技術評価応用局環境工学センター	インドネシア		2006年11月6日
Center of Environmental Technology, Agency for the Assessment and Application of Technology	Indonesia		November 6, 2006
中国科学院生態環境研究中心	中国		2006年11月18日
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences	China		November 18, 2006
キングモングクツエ科大学 北バンコク校科学技術研究所	タイ		2011年10月10日
Science and Technology Research Institute, King Mongkut's University of Technology North Bangkok	Thailand		October 10, 2011
インド工科大学デリー校	インド		2011年10月18日
Indian Institute of Technology Delhi (IITD)	India		October 18, 2011
マレーシアプトラ大学理学部	マレーシア		2013年3月21日
Faculty of Science, Universiti Putra Malaysia	Malaysia		March 21, 2013
クレルモンオーベルニュ大学	フランス		2018年1月30日
Université Clermont Auvergne	France		January 30, 2018
イノベーションズ フォー ハイ パフォーマンス マイクロエレクトロニクス Innovations for High Performance Microelectronics (IHP)	ドイツ Germany		2018年2月5日 February 5, 2018
ユーリヒ総合研究機構	ドイツ		2018年5月28日
Forschungszentrum Jülich GmbH	Germany		May 28, 2018
クルディスタン大学工学部	イラン		2018年7月23日
Faculty of Engineering, University of Kurdistan	Iran		July 23, 2018
バスク気候変動センター	スペイン		2018年8月16日
Basque Centre for Climate Change (BC3)	Spain		August 16, 2018
パドヴァ大学 情報工学部門	イタリア		2020年2月18日
Department of Information Engineering, University of Padova	Italy		February 18, 2020

国内 Collaboration in Japan

機 関名	協定年月日
Institutes	Agreement Dates
中部電力株式会社	2004年10月14日
Chubu Electric Power	October 14, 2004
愛知県	2004年11月26日
Aichi Prefecture	November 26, 2004
名古屋市	2004年11月26日
City of Nagoya	November 26, 2004
自然科学研究機構 核融合科学研究所	2007年9月13日
National Institute for Fusion Science, National Institutes of Natural Sciences	September 13, 2007
早稲田大学 現代政治経済研究所	2009年4月9日
Waseda Institute of Political Economy	April 9, 2009
一般財団法人ファインセラミックスセンター	2017年4月17日
Japan Fine Ceramics Center	April 17, 2017

研究所の財政 Financial Information	平成31年度	Academic Year, 2019
費目 Category	件数 Number of Adoptions	受入額(千円) Amount (in thousand yen)
運営費交付金 Management Expenses Grants	_	664,134
科学研究費補助金 Grants-in-Aid for Scientific Research	68	483,571
受託研究費 Contract Research	26	2,144,970
民間等との共同研究 Joint Research with Industry	113	619,644
奨学寄附金 Donations for Scientific Research	38	53,987
その他 Others	9	12,421
計 Total	254	3,978,727

教育貢献 Educational Contributions

平成31年度 Academic Year, 2019

学部生•大学院生•研究員 Undergraduates, Graduates, Research Fellows

	区分 atus	人数 Number of Students or Researchers
学部生 Undergraduate Studen	s	115 (4)
大学院生	博士前期課程 Master's Program	243 (45)
Graduate Students		73 (38)
博士研究員 Postdoctoral Fellows		44 (18)

本研究所の所属教員が主たる指導教員となっている学生数または研究員数。括弧内は外国人数 (内数)。 Supervised by faculty affiliated to the Institute. Number of foreign students or researchers in parentheses.

学位審査数 Number of Degree Reviews

主査の実績 Number of Principal Examiners

本研究所の所属教員が、本学の博士号学位審査で主査を務めた実績

Aggregate number of times faculty affiliated to the Institute have taken on the role of the principal examiner in a doctoral degree review

Ⅲ IMaSS DATA

受賞 Awards and Prizes		平成31年度 Academic Year, 201	
受賞件数 Number of Awards and Prizes		18	
学生が代表受賞者である件数は除く Not including awards and prizes given to students			
特許出願•取得数 Number of Patent Applications ar	nd Granted Patents	平成31年度 Academic Year, 201	
出願 Applications		50	
取得 Granted Patents		13	
施設 Facilities	_	△ 480/F4-B4-B18-F A	
建物 Buildings		令和2年4月1日現在 As of April 1st,202	
建物名 Buildings	研究所使用面積(m²) Floor Space used by the Institute	• (m²)	
研究所共同館 Research Institute Building	333		
研究所共同館II Research Institute Building II	3,804	ー 研究室・実験室・事務室として 使用している面積	
共同教育研究施設第3実験棟 nter-Departmental Education and Research Facilities, Laboratory 3	461		
総合研究実験棟 Research Laboratory Building	2,443	Floor space used as research space laboratory space, office space	
/J\計 Sub Total	7,041		
高効率エネルギー変換研究施設 Research Facility for Advanced Energy Conversion	504		
超高圧電子顕微鏡施設 ligh Voltage Electron Microscope Laboratory	996		
先端技術共同研究施設 Research Facility for Advanced Science and Technology	1,849	_ 固有の建物	
エネルギー変換エレクトロニクス実験施設 Center for Integrated Research of Future Electronics, Transformative Electronics F	Facilities (C-TEFs) 2,997	直有の建物 Individual buildings	
エネルギー変換エレクトロニクス研究館 Center for Integrated Research of Future Electronics, Transformative Electronics C	Commons (C-TECs) 6,469		
小計 Sub Total	12,815		

19,856

合計 Total

- 平成16年 4月 名古屋大学 エコトピア科学研究機構を設立 (2004.04)
 - (次の研究センター等の再編・統合により設立された。)
 - ・理工科学総合研究センター(昭和38年創設の人工結晶 研究施設を平成7年に改組)
 - ・高効率エネルギー変換研究センター(省資源エネルギー研 究センター(昭和57年創設)、その後、再度、高温エネルギー 変換研究センター(平成4年)を経て平成14年に改組)
 - ・難処理人工物研究センター(平成9年創設)
 - ・環境量子リサイクル研究センター(平成13年創設)
 - ・さらに全学の文系・理系の専門教員を追加配置
- 平成17年 4 月 名古屋大学 エコトピア科学研究所(学内措置の研究所) (2005.04) の設置
- 平成18年 4 月 名古屋大学 エコトピア科学研究所(国立大学の附置研究 所)へ改細
- 平成19年 4 月 名古屋大学 先端技術共同研究センター(昭和63年に創設) (2007.04) を統合
- 平成19年 7 月 研究所附属アジア資源循環研究センターの設置 (2007.07)
- 平成21年 4 月 研究所附属情報メディア教育センター(平成10年に創設) (2009.04) を廃止
- 平成24年 3 月 研究所附属アジア資源循環研究センターを廃止
- 平成27年 4月 研究所附属高度計測技術実践センターの設置 2015 04
- 平成27年10月 名古屋大学 未来材料・システム研究所へ改組
 - 研究所附属未来エレクトロニクス集積研究センターの設置
- 平成28年 4 月 「革新的省エネルギーのための材料とシステム研究拠点」として (2016.04) 共同利用・共同研究拠点に認定
 - トヨタ先端パワーエレクトロニクス寄附研究部門の設置
 - 産総研・名大 窒化物半導体先進デバイスオープンイノベーション ラボラトリの設置
- 平成28年 5 月 トヨタ先端パワーエレクトロニクス産学協同研究部門の設置 (2016.05)
 - デンソー自動車用パワーエレクトロニクス産学協同研究部門の設置
- 平成29年 3 月 NIMS・名大GaN評価基盤研究ラボラトリ 天野・小出共同(2017.03) 研究ラボ - の設置
- 平成30年 1 月 🌑 豊田合成GaN先端デバイス応用産学協同研究部門の設置 (2018.01)
- (2018.04)
- 平成30年4月 🌑 エネルギーシステム(中部電力) 寄附研究部門(第7期)の設置 (エネルギーシステム(中部電力) 寄附研究部門の平成8年創設)
- 平成30年 6 月 エネルギー変換エレクトロニクス実験施設(C-TEFs)の設置
- 平成30年12月 エネルギー変換エレクトロニクス研究館(C-TECs)の開設
- 平成31年 4 月 旭化成次世代デバイス産学協同研究部門の設置(2019.04)
 - 豊田中研GaNパワーデバイス産学協同研究部門の設置
- 令和元年 7 月 三菱ケミカルGaN基板デバイス産学協同研究部門の設置
 - ローム複合系シミュレーション産学協同研究部門の設置
- 令和2年4月 デンソー革新的ナノカーボン応用産学協同研究部門の設置(2020.04)

- 2004.04 Established EcoTopia Science Institute (Established through the restructuring and integration of the following research centers.)
 - Center for Integrated Research in Science and Engineering (1995 reorgani zation of the Synthetic Crystal Research Laboratory founded in 1963)
 - Research Center for Advanced Energy Conversion (Founded in 1982 as the Research Center for Resource and Energy Conservation, changed to the Research Center for Advanced Energy Conversion in 1992, and reor ganized in 2002)
 - Research Center for Advanced Waste and Emission Management (Founded in 1997)
 - Research Center for Nuclear Materials Recycle (Founded in 2001)
 - Added specialized instructors in all liberal arts and science departments
- 2005.04 Established Nagoya University EcoTopia Science Institute as a research institute for internal measures
- 2006.04 Reorganized Nagoya University EcoTopia Science Institute as an institute attached to a national university
- 2007.04 Integrated Nagoya University Research Facility for Advanced Science and Technology (founded in 1988)
- 2007.07 Established Nagoya University Center for Interdisciplinary Studies on Resource Recovery and Refinery in Asia
- 2009.04 Abolished Nagoya University Center for Information Media Studies (founded in 1998)
- 2012.03 Abolished Nagoya University Center for Interdisciplinary Studies on Resource Recovery and Refinery in Asia
- 2015.04 Established Nagoya University Advanced Measurement Technology Center
- 2015.10 Reorganized to Nagoya University Institute of Materials and Systems for Sustainability (IMaSS)
 - Established Nagoya University Center for Integrated Research of Future Electronics (CIRFE)
- 2016.04 Recognized as Joint Usage/Research Center of materials and systems for innovative energy saving.
 - Established Toyota Advanced Power Electronics Funded Research Division
 - Established AIST-NU GaN Advanced Device Open Innovation Laboratory
- 2016.05 Established Toyota Advanced Power Electronics IA Collaborative Chair
 - Established DENSO Automotive Power Electronics IA Collaborative Chair
- 2017.03 Established NIMS-NU GaN Evaluation Basic Research Laboratory - Amano-Koide Collaborative Research Lab -
- 2018.01 Established TOYODA-GOSEI GaN Leading Innovative R&D IA Collaborative Chair
- 2018.04 Established 7th phase of Energy Systems (Chubu Electric Power) Funded Research Division (1st phase of Energy Systems Funded Research Division founded in 1996)
- 2018.06 Established C-TEFs: CIRFE-Transformative Electronics Facilities
- 2018.12 Opened CIRFE-Transformative Electronics Commons "C-TECs"
- 2019.04 Established AsahiKASEI Innovative Devices IA Collaborative Chair
 - Established TOYOTA CENTRAL R&D LABS GaN Power Device IA Collaborative Chair
- 2019.07 Established MITSUBISHI CHEMICAL GaN Substrate Devices IA Collaborative Chair
 - Established Rohm Multi-Scale Power System SimulationIA Collaborative Chair
- 2020.04 Established DENSO Nano-carbon Research & Innovation IA Collaborative Chair

キャンパスマップ Campus Map

https://www.imass.nagoya-u.ac.jp/about/access.html

₩ 未来材料・システム研究所

〒464-8601 名古屋市千種区不老町 TEL: 052-789-5262 FAX: 052-747-6313 https://www.imass.nagoya-u.ac.jp

Institute of Materials and Systems for Sustainability IMaSS

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan Phone: +81-52-789-5262 FAX: +81-52-747-6313 https://www.imass.nagoya-u.ac.ip/en